Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 07040 | |
Number of page(s) | 6 | |
Section | 7 - Facilities, Clouds and Containers | |
DOI | https://doi.org/10.1051/epjconf/202024507040 | |
Published online | 16 November 2020 |
https://doi.org/10.1051/epjconf/202024507040
Lightweight dynamic integration of opportunistic resources
Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
* e-mail: max.fischer@kit.edu
Published online: 16 November 2020
To satisfy future computing demands of the Worldwide LHC Computing Grid (WLCG), opportunistic usage of third-party resources is a promising approach. While the means to make such resources compatible with WLCG requirements are largely satisfied by virtual machines and containers technologies, strategies to acquire and disband many resources from many providers are still a focus of current research. Existing meta-schedulers that manage resources in the WLCG are hitting the limits of their design when tasked to manage heterogeneous resources from many diverse resource providers.
To provide opportunistic resources to the WLCG as part of a regular WLCG site, we propose a new meta-scheduling approach suitable for opportunistic, heterogeneous resource provisioning. Instead of anticipating future resource requirements, our approach observes resource usage and promotes well-used resources. Following this approach, we have developed an inherently robust meta-scheduler, COBalD, for managing diverse, heterogeneous resources given unpredictable resource requirements. This paper explains the key concepts of our approach, and discusses the benefits and limitations of our new approach to dynamic resource provisioning compared to previous approaches.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.