Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 10005 | |
Number of page(s) | 7 | |
Section | 10 - Crossover sessions from online, offline and exascale | |
DOI | https://doi.org/10.1051/epjconf/202024510005 | |
Published online | 16 November 2020 |
https://doi.org/10.1051/epjconf/202024510005
GPU-based reconstruction and data compression at ALICE during LHC Run 3
European Organization for Nuclear Research (CERN), Geneva, Switzerland
* e-mail: drohr@cern.ch
Published online: 16 November 2020
In LHC Run 3, ALICE will increase the data taking rate significantly to 50 kHz continuous read out of minimum bias Pb-Pb collisions. The reconstruction strategy of the online offline computing upgrade foresees a first synchronous online reconstruction stage during data taking enabling detector calibration, and a posterior calibrated asynchronous reconstruction stage. The significant increase in the data rate poses challenges for online and offline reconstruction as well as for data compression. Compared to Run 2, the online farm must process 50 times more events per second and achieve a higher data compression factor. ALICE will rely on GPUs to perform real time processing and data compression of the Time Projection Chamber (TPC) detector in real time, the biggest contributor to the data rate. With GPUs available in the online farm, we are evaluating their usage also for the full tracking chain during the asynchronous reconstruction for the silicon Inner Tracking System (ITS) and Transition Radiation Detector (TRD). The software is written in a generic way, such that it can also run on processors on the WLCG with the same reconstruction output. We give an overview of the status and the current performance of the reconstruction and the data compression implementations on the GPU for the TPC and for the global reconstruction.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.