Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 8 | |
Section | Reactor Concepts and Special Mission Reactors | |
DOI | https://doi.org/10.1051/epjconf/202124701007 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124701007
FUEL TAP: A SIMPLIFIED BREED AND BURN MSR
1 Paul Scherrer Institut 5232 Villigen PSI, Switzerland
2 École polytechnique fédérale de Lausanne 1015 Lausanne, Switzerland
Published online: 22 February 2021
Breed-and-burn Molten Salt Reactors are an interesting option of reactor design that allow high fuel utilization while operating on an open fuel cycle. Such reactors usually require specialized codes in order to model its fuel cycle and the flowing fuel in an unmoderated core. In this work, we propose a design and perform a preliminary analysis of a homogeneous chloride salt single-fluid design. The fuel cycle is analyzed using the EQL0D tool in order to model reactor start-up and transition into an equilibrium state. Core simulation is performed using ATARI, an OpenFOAM-based multiphysics code developed at PSI. Results show that the core size for such a reactor is quite big and that it can be easily started with high-assay LEU. In addition, the core has been designed to promote a quasi-1D flow, opening the possibility of modeling the core with legacy codes in the future.
Key words: Breed-and-burn / Chloride / Fuel cycle / Multiphysics
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.