Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 06038 | |
Number of page(s) | 8 | |
Section | Advanced Modelling and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202124706038 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124706038
NUMERICAL BENCHMARK OF STRONGLY TO LOOSELY COUPLED ASSEMBLIES USING THE TRANSIENT FISSION MATRIX METHOD
1 DEN/CAD/DER/SPESI, CEA Cadarache, 13108 Saint Paul-Lez-Durance, France
2 DEN/CAD/DER/SPRC, CEA Cadarache, 13108 Saint Paul-Lez-Durance, France
kornilios.routsonis@cea.fr
patrick.blaise@cea.fr
jean.tommasi@cea.fr
Published online: 22 February 2021
Advances in computational methods have given rise to the study and simulation of different aspects of reactor behavior. As such, topics associated with high computational costs become feasible candidates for further investigation and one of them is reactor space-time kinetics (STK). Until recently, STK simulation and point kinetics approximation were limited to deterministic codes, with Monte Carlo codes being too costly to start with. However, recent developments in this area have allowed the use of certain methods in stochastic codes. One such technique is based on the Transient Fission Matrix (TFM) model, a hybrid method that uses a system response obtained through Monte Carlo and stored in fission and time matrices as input for deterministic calculations. The result enables a view of the STK in terms of neutron propagation probability and propagation time across the system. The TFM method was applied to a simple coupled core configuration to generate a numerical benchmark. The Serpent 2 Monte Carlo code was used for the stochastic part of the calculation. The configuration consists of two fuel assemblies placed in a light water tank, with a water blade of varying width between them. TFM, flux and fission results were obtained for varying water blade widths, ranging between 0 cm and 20 cm. The data is then used to analyze the behavior of the system, as well as the effects of the coupling between the two assemblies. As the assemblies move further apart, the system slowly transitions from two tightly coupled assemblies that essentially form a single core, to two almost independent cores. This study enables to produce a benchmark for future calculations and predefine an innovative way of designing high dominant ratio configurations, required for tackling Monte Carlo residual problems. An actual experimental program could be led in ad hoc zero power reactor (ZPR), such as the KUCA reactor of Kyoto University.
Key words: TFM / kinetics / Monte Carlo / Serpent / matrix
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.