Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 07010 | |
Number of page(s) | 8 | |
Section | Transient Systems and Analysis | |
DOI | https://doi.org/10.1051/epjconf/202124707010 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124707010
ADAPTIVE TIME-STEP CONTROL FOR THE MODAL METHOD TO INTEGRATE THE MULTIGROUP NEUTRON DIFFUSION EQUATION
1 Instituto de Seguridad Industrial, Radifísica y Medioambiental Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
2 Instituto Universitario de Matemática Multidisciplinar Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
Corresponding author
amcarsan@iqn.upv.es
anvifer2@upv.es
dginesta@mat.upv.es
gverdu@iqn.upv.es
Published online: 22 February 2021
The distribution of the power inside a reactor core can be described by the time dependent multigroup neutron diffusion equation. One of the approaches to integrate this time-dependent equation is the modal method, that assumes that the solution can be described by the sum of amplitude function multiplied by shape functions of modes. These shape functions can be computed by solving a _-modes problems. The modal method has a great interest when the distribution of the power cannot be well approximated by only one shape function, mainly, when local perturbations are applied during the transient. Usually, the shape functions of the modal methods are updated for the time-dependent equations with a constant time-step size to obtain accurate results. In this work, we propose a modal methodology with an adaptive control time-step to update the eigenfunctions associated with the modes. This algorithm improves efficiency because of time is not spent solving the systems to a level of accuracy beyond relevance and reduces the step size if they detect a numerical instability. Step size controllers require an error estimation. Different error estimations are considered and analyzed in a benchmark problem with a out of phase local perturbation.
Key words: Modal Methods / Adaptive Time-Step / Time-Dependent Neutron Diffusion / Error Estimators
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.