Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 09012 | |
Number of page(s) | 8 | |
Section | Nuclear Data | |
DOI | https://doi.org/10.1051/epjconf/202124709012 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124709012
ON-THE-FLY INTERPOLATION OF CONTINUOUS TEMPERATURE-DEPENDENT THERMAL NEUTRON SCATTERING DATA IN RMC CODE
Department of Engineering Physics, Tsinghua University 1st Qinghuayuan, Haidian District,Beijing, China
zl17@mails.tsinghua.edu.cn,
fengzy17@mails.tsinghua.edu.cn
wangkan@mail.tsinghua.edu.cn
* Corresponding author
Published online: 22 February 2021
Thermal neutron scattering data have an important influence on the high-fidelity neutronics calculation of thermal reactors. Due to the limited storage capabilities of computers, a discrete ACE representation of the secondary neutron energy and angular distribution has been used for Monte Carlo calculation since the early 1980s. The use of this discrete representation does not produce noticeable effects in the integral calculations such as keff eigenvalues, but can produce noticeable deficiencies for differential calculations. A new continuous representation of the thermal neutron scattering data was created in 2006, but was not widely known. Recently, the continuous representation of the thermal neutron scattering ACE data based on ENDF/B-Ⅷ.0 library was officially released and was available for all users. The new representation shows great difference compared with the discrete one. In order to utilize the more physical and rigorous representation data for high fidelity neutronic-thermohydraulic coupling calculation, the on-the-fly treatment capability was proposed and implemented in RMC code. The two-dimensional linear-linear interpolation method was used to calculate the inelastic scattering cross sections and the secondary neutron energies and angles. The on-the-fly treatment capability was tested by a pressurized water reactor assembly. Results show that the on-the-fly treatment capability has high accuracy, and can be used to consider the temperature feedback in the neutronic-thermohydraulic coupling calculations. However, the efficiency of the on-the-fly treatment still need to be improved in the near future.
Key words: interpolation / continuous thermal neutron scattering data / on-the-fly / RMC
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.