Issue |
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 6 | |
Section | Modelling & Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/202125002007 | |
Published online | 09 September 2021 |
https://doi.org/10.1051/epjconf/202125002007
Evaluation of impact ductile fracture behaviour of low carbon austenitic stainless steel SUS304L using damage mechanics model
1
Reserch and Development Group, Hitachi, Ltd. Ibaraki, Japan
2
Graduate School of Science and Mechanical Engineering, National Defense Academy, Kanagawa, Japan
3
Department of Mechanical Engineering, National Defense Academy, Kanagawa, Japan
4
Materials Science Lab., Central Research Institute of Electric Power Industry, Kanagawa, Japan
* Corresponding author: hidekazu.takazawa.te@hitachi.com
Published online: 9 September 2021
To clarify the applicability of the Gurson-Tvergaard-Needleman (GTN) model for impact ductile fracture behaviour, SHB test was reproduced by finite element analysis (FEA). The strain-rate dependence of the strength for austenitic stainless steel JIS SUS304L was obtained by tensile tests at quasi-static strain rate and impact strain rate. The CowperSymonds power law, which takes into the strain-rate dependence of strength, and the GTN model implemented in the commercial FEA code were used to simulate for impact ductile-fracture behaviour. GTN model parameters were determined by minimizing the difference between the simulated and measured stress-strain curve using response surface method. SHB test was simulated using GTN model obtained from quasi-static tensile test result. Simulation results did not occur the necking and fracture on the specimen. The fracture surfaces were observed by SEM micrograph. The appearance of ductile fracture since dimples are observed, regardless of the strain rate. It is necessary to adjust the parameter to accelerate the nucleation of the void. By identifying the GTN parameters in consideration of the strain rate dependence including impact strain rate. It would be possible to improve the simulation accuracy of impact ductile fracture behaviour.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.