Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03059 | |
Number of page(s) | 13 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103059 | |
Published online | 23 August 2021 |
https://doi.org/10.1051/epjconf/202125103059
Reframing Jet Physics with New Computational Methods
New York University
* e-mail: seb.macaluso@nyu.edu
Published online: 23 August 2021
We reframe common tasks in jet physics in probabilistic terms, including jet reconstruction, Monte Carlo tuning, matrix element – parton shower matching for large jet multiplicity, and efficient event generation of jets in complex, signal-like regions of phase space. We also introduce Ginkgo, a simplified, generative model for jets, that facilitates research into these tasks with techniques from statistics, machine learning, and combinatorial optimization. We also review some of the recent research in this direction that has been enabled with Ginkgo. We show how probabilistic programming can be used to efficiently sample the showering process, how a novel trellis algorithm can be used to efficiently marginalize over the enormous number of clustering histories for the same observed particles, and how the dynamic programming and reinforcement learning can be used to find the maximum likelihood clusterinng in this enormous search space. This work builds bridges with work in hierarchical clustering, statistics, combinatorial optmization, and reinforcement learning.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.