Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03068 | |
Number of page(s) | 8 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103068 | |
Published online | 23 August 2021 |
https://doi.org/10.1051/epjconf/202125103068
FuncADL: Functional Analysis Description Language
University of Washington
* e-mail: masonLp@uw.edu
** e-mail: gwatts@uw.edu
Published online: 23 August 2021
The traditional approach in HEP analysis software is to loop over every event and every object via the ROOT framework. This method follows an imperative paradigm, in which the code is tied to the storage format and steps of execution. A more desirable strategy would be to implement a declarative language, such that the storage medium and execution are not included in the abstraction model. This will become increasingly important to managing the large dataset collected by the LHC and the HL-LHC. A new analysis description language (ADL) inspired by functional programming, FuncADL, was developed using Python as a host language. The expressiveness of this language was tested by implementing example analysis tasks designed to benchmark the functionality of ADLs. Many simple selections are expressible in a declarative way with FuncADL, which can be used as an interface to retrieve filtered data. Some limitations were identified, but the design of the language allows for future extensions to add missing features. FuncADL is part of a suite of analysis software tools being developed by the Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP). These tools will be available to develop highly scalable physics analyses for the LHC.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.