Issue |
EPJ Web Conf.
Volume 257, 2022
mm Universe @ NIKA2 - Observing the mm Universe with the NIKA2 camera
|
|
---|---|---|
Article Number | 00015 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjconf/202225700015 | |
Published online | 17 January 2022 |
https://doi.org/10.1051/epjconf/202225700015
Characterizing the bulk and turbulent gas motions in galaxy clusters
1 IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
2 Department of Astronomy, University of Geneva, Ch. d’Ecogia 16, CH-1290 Versoix, Switzerland
* e-mail: sdupourque@irap.omp.eu
Published online: 17 January 2022
The most massive halos of matter in the Universe grow via accretion and merger events throughout cosmic times. These violent processes generate shocks at many scales and induce large-scale bulk and turbulent motions. These processes inject kinetic energy at large scales, which is transported to the viscous dissipation scales, contributing to the overall heating and virialisation of the halo, and acting as a source of non-thermal pressure in the intra-cluster medium. Characterizing the physical properties of these gas motions will help us to better understand the assembly of massive halos, hence the formation and the evolution of these large-scale structures. We base this characterization on the study of the X-ray and Sunyaev-Zel’dovich effect brightness fluctuations. Our work relies on three complementary samples covering a wide range of red-shifts, masses and dynamical states of clusters. We present the results of our X-ray analysis for the low redshift sample, X-COP, and a subsample of higher redshift clusters. We investigate the derived properties according to the dynamical state of our clusters, and the possibility of a self-similar behaviour based on the reconstructed gas motions power-spectra and the correlation with various morphological indicators.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.