Issue |
EPJ Web Conf.
Volume 264, 2022
EFM21 – 15th International Conference “Experimental Fluid Mechanics 2021”
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 6 | |
Section | Contributions | |
DOI | https://doi.org/10.1051/epjconf/202226401019 | |
Published online | 11 July 2022 |
https://doi.org/10.1051/epjconf/202226401019
Software-based processing system for phase Doppler systems
1
Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
2
Aero and Auto Engineering, Loughborough University, UK
3
James F. Meyers, (retired), NASA Langley Research Center, Hampton, VA, USA
* Corresponding author: milan.maly@vutbr.cz
Published online: 11 July 2022
A Monte Carlo simulation of Phase Doppler systems has been developed. It consists of three sections, the droplet flow description, generation of the photomultiplier signals and then their processing to determine droplet velocities and the time shift between the signals from the three scattered light detection apertures. With highly realistic Doppler bursts being simulated and processed, the question arises as to whether the signal processing software could be used to process ‘real-world’ experimental signals. In a preliminary assessment of its capabilities in such a situation, actual spray Doppler signals (from a Dantec fibre-based PDA system with a BSA signal processor) were recorded and used as input to the software signal processor. The signals from the three photomultipliers were input first into a Picoscope and then into the BSA processor. In this way droplet velocities and size estimates would be available from the BSA as control data. The signal outputs were taken as csv files, and input directly into the software signal processor. Initially the software determined the time location of the centre of each signal burst envelop. This approach was shown to measure signal delays from single cycle to multiple cycles. For this experiment, the software was modified by adding a zero-crossing approach to measure the single cycle delays. The introduction of this method should establish the accuracy of the complete software package in the real world as the results from the preliminary experiment show good agreement between the two techniques.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.