Issue |
EPJ Web Conf.
Volume 264, 2022
EFM21 – 15th International Conference “Experimental Fluid Mechanics 2021”
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 5 | |
Section | Contributions | |
DOI | https://doi.org/10.1051/epjconf/202226401025 | |
Published online | 11 July 2022 |
https://doi.org/10.1051/epjconf/202226401025
CFD analysis of the ultrasonic gas meter channel
Department of Power Engineering Equipment, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 2, 46117, Liberec, Czech Republic
* Corresponding author: jan.novosad@tul.cz
Published online: 11 July 2022
This paper describes a process of numerical testing and optimization of the ultrasonic gas meter channel. A conventional ultrasonic flowmeter requires a large installation space due to the quality and stability of the velocity profile. Previously, the shape of the inner gas meter channel was optimized to reach a suitable flow field for ultrasonic measurement. The goal of this work is to find an optimal design of reduced size gas meter to achieve a stable velocity profile with minimum disturbances regardless of the entry conditions in the smallest possible space. Flow characteristics for volume flow rate in the range (1 to 250) m3/h were tested and the parameters of the gas meter were adjusted. Obtained results show good match with the requirements. Future work should aim to the measurement of transit time and the stability of measured values on the optimized design. Finally, it will enable to create the analogy between numerically obtained velocity fields and real transit time measurement.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.