Issue |
EPJ Web Conf.
Volume 281, 2023
5th International Workshop on Nuclear Data Covariances (CW2022)
|
|
---|---|---|
Article Number | 00024 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/epjconf/202328100024 | |
Published online | 29 March 2023 |
https://doi.org/10.1051/epjconf/202328100024
Marginalization methods for the production of conservative covariance on nuclear data
CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache, F-13108 Saint Paul Les Durance, France
* e-mail: pierre.tamagno@cea.fr
Published online: 29 March 2023
The production of evaluated nuclear data consists not only in the determination of best estimate values for the quantities of interest but also on the estimation of the related uncertainties and correlations. When nuclear data are evaluated with underlying nuclear reaction models, model parameters are expected to synthesize all the information that is extracted from the experimental data they are adjusted on. When dealing with models with a small number of parameters compared to the number of experimental data points – e.g. in resonant cross section analysis – one sometimes faces excessively small evaluated uncertainty compared for instance with model/experimental data agreement. To solve this issue, an attempt was to propagate the uncertainty coming from experimental parameters involved in the data reduction process on the nuclear physics model parameters. It pushed experimentalists to separately supply random (statistical) and systematic uncertainties. It also pushed evaluators to include or mimic the data reduction process in the evaluation. In this way experimental parameters – also called nuisance parameters – could be used to increase evaluated parameter uncertainty through marginalization techniques. Two of these methods: Matrix and Bayesian marginalizations – respectively called sometimes Analytical and Monte-Carlo Marginalizations – that are currently used for evaluation will be discussed here and some limitations highlighted. A third alternative method, also based on a Bayesian approach but using the spectral decomposition of the correlation matrix, is also presented on a toy model, and on a a simple case of resonant cross section analysis.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.