Issue |
EPJ Web of Conf.
Volume 284, 2023
15th International Conference on Nuclear Data for Science and Technology (ND2022)
|
|
---|---|---|
Article Number | 17002 | |
Number of page(s) | 4 | |
Section | Thermal Neutron Scattering | |
DOI | https://doi.org/10.1051/epjconf/202328417002 | |
Published online | 26 May 2023 |
https://doi.org/10.1051/epjconf/202328417002
Generation of thermal scattering laws with the CINEL code
1 CEA, DES, IRESNE Cadarache, F-13108 Saint Paul Les Durances, France
2 Institut Laue-Langevin, F-38042 Grenoble, France
3 Laboratoire Leon Brillouin (CEA-CNRS), Universite Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette Cdex, France
4 C3NRS-CEA-Universite Grenoble Alpes, SyMMES, F-38000 Grenoble, France
* e-mail: gilles.noguere@cea.fr
Published online: 26 May 2023
The thermal scattering laws (TSL) take into account the crystalline structure and atomic motions of isotopes bound in materials. This paper presents the CINEL code, which was developed to generate temperature-dependent TSL for solid, liquid and free gas materials of interest for nuclear reactors. CINEL is able to calculate TSL from the phonon density of states (PDOS) of materials under the Gaussian-Incoherent approximations. The PDOS can be obtained by using theoretical approaches (e.g., ab initio density functional theory and molecular dynamics) or experimental results. In this work, the PDOS presented in the ENDF/BVIII.0 and NJOY-NCrystal libraries were used for numerical validation purposes. The CINEL results are in good agreement with those reported in these databases, even in the specific cases of TSL with the newly mixed elastic format. The coding flexibility offered by Python using the JupyterLab interface allowed to investigate limits of physical models reported in the literature, such as a four-site model for UO2, anharmonic behaviors of oxygen atoms bound in a Fm3m structure, texture in Zry4 samples and jump corrections in a roto-translational diffusion model for liquid water. The use of graphic processing units (GPU) is a necessity to perform calculations in a few minutes. The performances of the CINEL code is illustrated with the results obtained on actinide oxides having a Fm3m structure (UO2, ThO2, NpO2 and PuO2), low enriched fuel (UMo), cladding (Zry4) and moderators (H2O with a specific emphasis on ice).
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.