Issue |
EPJ Web Conf.
Volume 286, 2023
European Conference on Neutron Scattering 2023 (ECNS 2023)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 7 | |
Section | Neutron Facilities and Deuteration Infrastructure | |
DOI | https://doi.org/10.1051/epjconf/202328601002 | |
Published online | 09 October 2023 |
https://doi.org/10.1051/epjconf/202328601002
The future of ESS is bright
1 European Spallation Source, SE-22100 Lund, Sweden
2 Forschungszentrum Jülich, 52425 Jülich, Germany
3 Uppsala University, 751 20 Uppsala, Sweden
* Corresponding author: werner.schweika@ess.eu
Published online: 9 October 2023
The European Spallation Source ESS has still a huge upgrade potential by using an accelerator ring structure for proton pulse compression that can change the long pulse to a medium pulse structure. Therefore, we consider the performance of a medium pulse structure on the existing ESS target, moderator and neutron instrumentation. A medium proton pulse will enhance the neutron peak brightness of thermal and cold neutrons by about one order of magnitude and even up to two orders of magnitude at shortest wavelengths used at ESS, largely increasing the performance of the ESS instruments for neutron scattering. The arguments for a medium pulse length are that it is best adapted to the resolution requirements of the ESS instruments, the coupled moderator, the typical long instruments; furthermore, that it seems feasible to realise a medium pulse length by advanced, slow extraction from an accelerator ring, and feasible for the rotating tungsten target to take the high-power load. We discuss the implications of a medium proton pulse length and its specific choice for the instrument resolution, and for moderator and target. The proposed upgrade is stimulated by the new project ESSnuSB for a neutrino super beam at ESS and motivated by the synergy effect of using a common pulse compressor ring. The upgrade will be a most economical and efficient path for the ESS to a next higher level from an already world leading long-pulse source, transforming with a medium pulse structure into an even much more powerful, future next generation neutron source.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.