Issue |
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 6 | |
Section | Fusion Diagnostics and Technology | |
DOI | https://doi.org/10.1051/epjconf/202328803002 | |
Published online | 21 November 2023 |
https://doi.org/10.1051/epjconf/202328803002
Characterization of the Fast Neutron Generators for Calibration of Fusion Neutron Diagnostics
1 Project Center ITER (ITER RF DA), Moscow, Russia
2 Dukhov Automatics Research Institute (FSUE VNIIA), Moscow, Russia
Published online: 21 November 2023
Modern magnetic confinement fusion devices increasingly rely on extensive neutron diagnostic configurations to measure a plethora of key plasma parameters. Measurement accuracy for these diagnostics depends heavily on in situ calibration. In order to enable said calibration, we set out to propose a reliable and powerful fast neutron source, to define a characterization plan for this source in terms of yield, flux and energy distributions, propose an optimized set of tools suitable for online monitoring of neutron source performance and its metrological characteristics. In the framework of this research activity with the ultimate aim of ITER tokamak neutron diagnostics calibration we rely on industrial-grade fast neutron generator NG-24 (D-D neutron yield ~109 n/s, D-T neutron yield ~1011 n/s) with sealed tube and stuffed, titanium target developed by FSUE VNIIA. The well-known analytical expressions for thick target NGs and our measurements using neutron spectrometers utilizing threshold reactions – diamond detector and LaCl3 scintillator for D-T and D-D neutron generators respectively – were found to be significantly coherent. These data are supported through our multi-step forward modelling including ion stopping in target, fusion reaction kinematics modelling and calculating detector response based on modelled neutron spectra. We discuss methods of uncertainty mitigation of neutron spectrometer measurements. Application of both neutron activation analysis and gas-filled neutron flux monitors during source characterization and operation allows for lowing statistical uncertainty of neutron flux measurements to 1% level over 1 minute of time resolution. Over the course of several measurement campaigns the optimal set of measurement tools have been determined including detector dimensions, required acquisition time, calibration methods.
Key words: neutron generator / neutron spectrometer / fusion product / plasma diagnostics / neutron calibration
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.