Issue |
EPJ Web Conf.
Volume 293, 2024
mm Universe 2023 - Observing the Universe at mm Wavelengths
|
|
---|---|---|
Article Number | 00043 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjconf/202429300043 | |
Published online | 28 March 2024 |
https://doi.org/10.1051/epjconf/202429300043
ALMA Band 9 upgrade: A feasibility study
Kapteyn Astronomical Insitute, University of Groningen, Groningen, The Netherlands
* e-mail: realini@astro.rug.nl
Published online: 28 March 2024
We present the results of a study on the feasibility of upgrading the existing ALMA Band 9 receivers (602-720 GHz). In the current configuration, each receiver is a dual channel heterodyne system capable of detecting orthogonally polarized signals through the use of a wire grid and a compact arrangement of mirrors. The main goals of the study are the upgrade of the mixer architecture from Double-Sideband (DSB) to Sideband-separating (2SB), the extension of the IF and RF bandwidth, and the analysis of the possibilities of improving the polarimetric performance. We demonstrate the performance of 2SB mixers both in the lab and on-sky with the SEPIA660 receiver at APEX, which shows image rejection ratios exceeding 20 dB and can perform successful observations of several spectral lines close to the band edges. The same architecture in ALMA Band 9 would lead to an increase in the effective spectral sensitivity and a gain of a factor two in observation time. We set up also an electromagnetic model of the optics to simulate the polarization performance of the receivers, which is currently limited by the cross-polar level and the beam squint, i.e. pointing mismatch between the two polarizations. We present the results of the simulations compared to the measurements and we conclude that the use of a polarizing grid is the main responsible of the limitations.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.