Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 03034 | |
Number of page(s) | 8 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202429503034 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429503034
Refined drift chamber simulation in the CEPC experiment
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, China
* e-mail: fangwx@ihep.ac.cn
Published online: 6 May 2024
The Circular Electron Positron Collider (CEPC) is a future experiment aimed at studying the properties of the Higgs boson with high precision. This requires excellent track reconstruction and particle identification (PID) performance, which is achieved in the 4th conceptual detector design of the CEPC experiments by combining a silicon tracker and a drift chamber. The drift chamber not only improves track reconstruction but also provides excellent PID with the cluster counting method. To evaluate the performance of this design accurately, a detailed simulation is necessary. In this paper, we present a refined drift chamber simulation by combining Geant4 and Garfield++. However, traditional waveform simulation using Garfield++ is extremely time-consuming, which motivates us to develop a fast waveform simulation method using a neural network. We validate the method using real data from the BESIII experiment. The results demonstrate the effectiveness of our approach and provide valuable insights for future experiments.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.