Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 04036 | |
Number of page(s) | 8 | |
Section | Distributed Computing | |
DOI | https://doi.org/10.1051/epjconf/202429504036 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429504036
Scientific Community Transfer Protocols, Tools, and Their Performance Based on Network Capabilities
California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, United States
* e-mail: raimis.sirvis@gmail.com
** e-mail: preeti@caltech.edu
Published online: 6 May 2024
The efficiency of high energy physics workflows relies on the ability to rapidly transfer data among the sites where the data is processed and analyzed. The best data transfer tools should provide a simple and reliable solution for local, regional, national and in some cases intercontinental data transfers. This work outlines the results of data transfer tool tests using internal and external (simulated latency and packet loss) in 100 Gbps testbeds and compares the results among the existing solutions, while also treating the issue of tuning parameters and methods to help optimize the rates of transfers. Many tools have been developed to facilitate data transfers over wide area networks. However, few studies have shown the tools’ requirements, use cases, and reliability through comparative measurements. Here, we were evaluating a variety of high-performance data transfer tools used today in the LHC and other scientific communities, such as FDT, WDT, and NDN in different environments. Furthermore, this test was made to reproduce real-world data transfer examples to analyse each tool’s strengths and weaknesses, including the fault tolerance of the tools when we have packet loss. By comparing the tools in a controlled environment, we can shed light on the tool’s relative reliability and usability for academia and industry. Also, this work highlights the best tuning parameters for WAN and LAN transfers for maximum performance, in several cases.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.