Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 04053 | |
Number of page(s) | 8 | |
Section | Distributed Computing | |
DOI | https://doi.org/10.1051/epjconf/202429504053 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429504053
Utilizing Distributed Heterogeneous Computing with PanDA in ATLAS
1 Brookhaven National Laboratory, Upton, NY, USA
2 University of Texas at Arlington, Arlington, TX, USA
3 University of Pittsburgh, Pittsburgh, PA, USA
* e-mail: tmaeno@bnl.gov
Published online: 6 May 2024
In recent years, advanced and complex analysis workflows have gained increasing importance in the ATLAS experiment at CERN, one of the large scientific experiments at LHC. Support for such workflows has allowed users to exploit remote computing resources and service providers distributed worldwide, overcoming limitations on local resources and services. The spectrum of computing options keeps increasing across the Worldwide LHC Computing Grid (WLCG), volunteer computing, high-performance computing, commercial clouds, and emerging service levels like Platform-as-a-Service (PaaS), Container-as-a-Service (CaaS) and Function-as-a-Service (FaaS), each one providing new advantages and constraints. Users can significantly benefit from these providers, but at the same time, it is cumbersome to deal with multiple providers, even in a single analysis workflow with fine-grained requirements coming from their applications’ nature and characteristics. In this paper, we will first highlight issues in geographically-distributed heterogeneous computing, such as the insulation of users from the complexities of dealing with remote providers, smart workload routing, complex resource provisioning, seamless execution of advanced workflows, workflow description, pseudointeractive analysis, and integration of PaaS, CaaS, and FaaS providers. We will also outline solutions developed in ATLAS with the Production and Distributed Analysis (PanDA) system and future challenges for LHC Run4.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.