Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 8 | |
Section | Physics Analysis Tools | |
DOI | https://doi.org/10.1051/epjconf/202429506001 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429506001
KinKal: A Kinematic Kalman filter Track Fitting Package for the Mu2e Experiment
Lawrence Berkeley National Lab
* e-mail: dave_brown@lbl.gov
Published online: 6 May 2024
Many current physics experiments require precision reconstruction of low-energy particles. One example is the Mu2e experiment, which requires reconstructing an isolated 105 MeV electron with better than 500 KeV/c momentum resolution. Mu2e uses a low-mass straw tube tracker, and a CsI crystal calorimeter, to reconstruct tracks. In this paper, we present the design and performance of a track reconstruction algorithm optimized for Mu2e’s unusual requirements. The algorithm is based on the KinKal [1] kinematic Kalman filter track fit package. KinKal supports multiple track parameterizations, including one optimized for looping tracks, such as Mu2e signal tracks, and others optimized for straight or slightly-curved tracks, such as the high-momentum (>1 GeV/c) cosmic ray muons used to calibrate and align the Mu2e detectors. All KinKal track parameterizations include the track origin time, to correctly model correlations arising from measurements that couple time and space, such as the straw drift time or the calorimeter cluster time. KinKal employs magnetic field inhomogeneity and material effect correction algorithms with 10−4 fractional precision. The Mu2e fit uses Artificial Neural Net functions to discriminate background hits from signal hits, and to resolve the straw tube hit left-right ambiguity, while iterating the extended Kalman filter. The efficiency, accuracy, and precision of the Mu2e track reconstruction, as tested on detailed simulations of Mu2e data, are presented.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.