Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 07020 | |
Number of page(s) | 9 | |
Section | Facilities and Virtualization | |
DOI | https://doi.org/10.1051/epjconf/202429507020 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429507020
Federated Heterogeneous Compute and Storage Infrastructure for the PUNCH4NFDI Consortium
1 Thüringer Landessternwarte Tautenburg, Germany
2 University of Bonn, Germany
3 Karlsruhe Institute of Technology (KIT), Germany
4 Bielefeld University, Germany
5 Deutsches Elektronen-Synchrotron (DESY), Germany
* e-mail: Manuel.Giffels@kit.edu
Published online: 6 May 2024
PUNCH4NFDI, funded by the Germany Research Foundation initially for five years, is a diverse consortium of particle, astro-, astroparticle, hadron and nuclear physics embedded in the National Research Data Infrastructure initiative. In order to provide seamless and federated access to the huge variety of compute and storage systems provided by the participating communities covering their very diverse needs, the Compute4PUNCH and Storage4PUNCH concepts have been developed. Both concepts comprise state-of-the-art technologies such as a token-based AAI for standardized access to compute and storage resources. The community supplied heterogeneous HPC, HTC and Cloud compute resources are dynamically and transparently integrated into one federated HTCondorbased overlay batch system using the COBalD/TARDIS resource meta-scheduler. Traditional login nodes and a JupyterHub provide entry points into the entire landscape of available compute resources, while container technologies and the CERN Virtual Machine File System (CVMFS) ensure a scalable provisioning of community-specific software environments. In Storage4PUNCH, community supplied storage systems mainly based on dCache or XRootD technology are being federated in a common infrastructure employing methods that are well established in the wider HEP community. Furthermore existing technologies for caching as well as metadata handling are being evaluated with the aim for a deeper integration. The combined Compute4PUNCH and Storage4PUNCH environment will allow a large variety of researchers to carry out resource-demanding analysis tasks. In this contribution we will present the Compute4PUNCH and Storage4PUNCH concepts, the current status of the developments as well as first experiences with scientific applications being executed on the available prototypes.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.