Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 11002 | |
Number of page(s) | 8 | |
Section | Heterogeneous Computing and Accelerators | |
DOI | https://doi.org/10.1051/epjconf/202429511002 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429511002
APEIRON: A Framework for High Level Programming of Dataflow Applications on Multi-FPGA Systems
1 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tor Vergata, Rome, Italy
3 Università di Roma "La Sapienza", Rome, Italy
4 CINECA, Bologna, Italy
* e-mail: cristian.rossi@roma1.infn.it
Published online: 6 May 2024
High Energy Physics (HEP) Trigger and Data Acquisition systems (TDAQs) need ever increasing throughput and real-time data analytics capabilities either to improve particle identification accuracy and further suppress background events in trigger systems or to perform an efficient online data reduction for trigger-less ones.
As for the requirements imposed by HEP TDAQs applications in the class of real-time dataflow processing, FPGA devices are a good fit inasmuch they can not only provide adequate compute, memory and I/O resources but also a smooth programming experience thanks to the availability of High-Level Synthesis (HLS) tools.
The main motivation for the design and development of the APEIRON framework is that the currently available HLS tools do not natively support the deployment of applications over multiple FPGA devices, which severely chokes the scalability of problems that this approach could tackle. To overcome this limitation, we envisioned APEIRON as an extension of the Xilinx Vitis framework able to support a network of FPGA devices interconnected by a lowlatency direct network as the reference execution platform.
Developers can define scalable applications, using a dataflow programming model inspired by Kahn Process Networks, that can be efficiently deployed on a multi-FPGAs system: the APEIRON communication IPs allow low-latency communication between processing tasks deployed on FPGAs, even if they are hosted on different computing nodes. Thanks to the use of HLS tools in the workflow, processing tasks are described in C++ as HLS kernels, while communication between tasks is expressed through a lightweight C++ API based on non-blocking send() and blocking receive() operations.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.