Issue |
EPJ Web Conf.
Volume 296, 2024
30th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 4 | |
Section | Electromagnetic Probes | |
DOI | https://doi.org/10.1051/epjconf/202429607004 | |
Published online | 26 June 2024 |
https://doi.org/10.1051/epjconf/202429607004
Thermal dielectron measurements in Au+Au collisions at √SNN = 7.7, 14.6, and 19.6 GeV with the STAR experiment
Rice University
Published online: 26 June 2024
Dielectrons emitted during the evolution of the hot and dense QCD medium created in relativistic heavy-ion collisions offer an effective way to probe the medium properties, as they do not interact via the strong force. The rate of the dielectron emission is proportional to the medium’s electromagnetic spectral function. In the dielectron invariant mass range from 400 MeV/c2 to 800 MeV/c2, the spectral function probes the in-medium ρ meson propagator which is sensitive to the medium’s properties including the total baryon density and the temperature. Meanwhile, the low energy range of the spectral function provides information about the medium’s electrical conductivity. Therefore, by measuring thermal dielectron production, we can study the microscopic interactions between the electromagnetic current and the medium. The STAR experiment has recorded large datasets of Au+Au collisions during the Beam Energy Scan Phase-II (BES-II) program, spanning center-of-mass energies between √SNN = 3.0 and 19.6 GeV with detector upgrades that benefit the dielectron measurement via extended transverse momentum and rapidity coverages as well as enhanced particle identification capability. In these proceedings, we will report on the measurements of thermal dielectrons produced in Au+Au collisions at √SNN = 7.7, 14.6, and 19.6 GeV using the STAR experiment.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.