Issue |
EPJ Web Conf.
Volume 302, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024)
|
|
---|---|---|
Article Number | 05008 | |
Number of page(s) | 11 | |
Section | Multi-Physics Simulations | |
DOI | https://doi.org/10.1051/epjconf/202430205008 | |
Published online | 15 October 2024 |
https://doi.org/10.1051/epjconf/202430205008
Simulating Hydrogen Diffusion in ZrH Moderator and its Impact on Coupled Neutronic-Thermal Simulation of a Heat Pipe Microreactor
Massachusetts Institute of Technology
* e-mail: rkendric@mit.edu
** e-mail: bforget@mit.edu
Published online: 15 October 2024
Metal hydride moderators are a common material choice for moderating compact reactor designs, as their high thermal limits and high density of hydrogen make them favorable for operation. One additional attribute of metal hydrides, zirconium hydride in particular, is the relatively large mobility of hydrogen within the metal lattice, especially at high temperatures and under large thermal gradients. As hydrogen’s spatial distribution directly impacts neutron thermalization in the system, and therefore power shape, changes in hydrogen concentration of the moderator may be important to analyze. This work couples OpenMC and MOOSE in order to solve the feedback loop of the coupled power distribution-thermal distribution-hydrogen migration without relying on mesh discretization. Functional expansions are used extensively as a method of transferring spatial information, and continuously varying material tracking is used in the neutronic solver to represent the change in hydrogen concentrations. The resulting hydrogen redistribution is highlighted, as well as the resulting neutronic and thermal impact of this redistribution.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.