Issue |
EPJ Web Conf.
Volume 309, 2024
EOS Annual Meeting (EOSAM 2024)
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 2 | |
Section | Topical Meeting (TOM) 6- Optical Materials | |
DOI | https://doi.org/10.1051/epjconf/202430906002 | |
Published online | 31 October 2024 |
https://doi.org/10.1051/epjconf/202430906002
CO2 laser assisted processing of (Ho0.05Y0.95)2Ti2O7 coatings for infrared photonics
Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, Prague 8, 182 51, Czech Republic
* Corresponding author: podrazky@ufe.cz
Published online: 31 October 2024
We demonstrated CO2 laser assisted processing of highly transparent (Ho0.05Y0.95)2Ti2O7 nanocrystalline coatings. The amorphous coating of the thickness of 577 nm was prepared by subsequent spin-coating of a colloidal solution followed by densification at 700°C in a radiation furnace. The densified coating was irradiated by a laser beam of a power density of 20 mW/mm2 for 60 s to induce the crystallization process. The nanocrystals formation caused the densification of the coatings reducing the thickness to 490 nm and increased the refractive index to 2.088. The coating exhibited strong luminescence at 2.1 and 2.95 μm corresponding to 5I7→5I8 and 5I6→5I7 electronic transitions, respectively. The corresponding time-resolved luminesce records showed the single-exponential decay course reaching the values of 8.4 ms and 0.221 ms for the emissions recorded at 2.1 and 2.95 μm, respectively. The demonstrated process can be used to prepare a luminescent coating with tailored properties. CO2 laser assisted processing can be used in a manner of direct laser writing for the preparation of integrated optical waveguides and amplifiers as a powerful alternative to conventional thermal processing.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.