Issue |
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 8 | |
Section | Detector | |
DOI | https://doi.org/10.1051/epjconf/202431503009 | |
Published online | 18 December 2024 |
https://doi.org/10.1051/epjconf/202431503009
Development of particle flow algorithm with GNN for Higgs factories
1 Graduate school of science, the University of Tokyo
2 ICEPP, The University of Tokyo
* e-mail: murata@icepp.s.u-tokyo.ac.jp
** e-mail: suehara@icepp.s.u-tokyo.ac.jp
Published online: 18 December 2024
Particle flow plays an important role in precise measurement of Higgs bosons at future lepton colliders such as ILC and FCCee. Various detector concepts are designed to maximize the effect of particle flow to be able to separate each particles inside jets and improve the resolutions. For the standard particle flow algorithm, PandoraPFA is used for long in ILC studies. It is a multi-step reconstruction algorithm consisting of clustering, track-cluster association, and various refinement processes. We have studied machine learned particle flow model using Graph Neural Network based algorithm developed in the context of CMS HGCAL clustering. This model utilizes GravNet as GNN architecture and Object Condensation loss function for training. Since the HG-CAL algorithm only performs clustering at the calorimeter, we have extended the model with track-cluster matching to achieve full PFA. Details of initial implementation of the track-cluster matching algorithm as well as performance evaluation with multiple tau events and jet events will be shown. The results are also compared to the Pandora PFA.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.