| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01062 | |
| Number of page(s) | 7 | |
| DOI | https://doi.org/10.1051/epjconf/202533701062 | |
| Published online | 07 October 2025 | |
https://doi.org/10.1051/epjconf/202533701062
Building Scalable Analysis Infrastructure for ATLAS
1 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
2 University of Victoria, British Columbia, Canada
3 Brookhaven National Laboratory, Upton, NY, USA
4 Indiana University, Bloomington, IN, USA
* e-mail: lincolnb@uchicago.edu
Published online: 7 October 2025
We explore the adoption of cloud-native tools and principles to forge flexible and scalable infrastructures, aimed at supporting analysis frameworks being developed for the ATLAS experiment in the High Luminosity Large Hadron Collider (HL-LHC) era. The project culminated in the creation of a federated platform, integrating Kubernetes clusters from various providers such as Tier-2 centers, Tier-3 centers, and from the IRIS-HEP Scalable Systems Laboratory, a National Science Foundation project. A unified interface was provided to streamline the management and scaling of containerized applications. Enhanced system scalability was achieved through integration with analysis facilities, enabling spillover of Jupyter/Binder notebooks and Dask workers to Tier-2 resources. We investigated flexible deployment options for a “stretched” (over the wide area network) cluster pattern, including a centralized “lights out management” model, remote administration of Kubernetes services, and a fully autonomous site-managed cluster approach, to accommodate varied operational and security requirements. The platform demonstrated its efficacy in multi-cluster demonstrators for low-latency analyses and advanced workflows with tools such as Coffea, ServiceX, Uproot and Dask, and RDataFrame, illustrating its ability to support various processing frameworks. The project also resulted in a robust user training infrastructure for ATLAS software and computing on-boarding events.
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

