Open Access
Issue
EPJ Web of Conferences
Volume 26, 2012
DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01012
Number of page(s) 6
Section Experimental Techniques
DOI https://doi.org/10.1051/epjconf/20122601012
Published online 31 August 2012
  1. Duncan, J., 1999. Dynamic mechanical analysis techniques and complex modulus, in Mechanical Properties and Testing of Polymers, ed. G.M. Swallowe, pp. 43-48, publ. Dordrecht, The Netherlands, Kluwer. [CrossRef] [Google Scholar]
  2. Garret, S. L., 1990. Resonant acoustic determination of elastic moduli. J. Acoust. Soc. Am. 88(1), July, 210-221 [CrossRef] [Google Scholar]
  3. Guo, Q., Brown, D. A., 2000. Determination of the dynamic elastic moduli and internal friction using thin rods. J. Acoust. Soc. Am. 108, 167-174. [CrossRef] [PubMed] [Google Scholar]
  4. Madigowski, W. M. Lee, G. F., 1983. Improved resonance technique for materials characterization. J. Acou. Soc. Am. 73(3), 1374-1377 [CrossRef] [Google Scholar]
  5. Pintelon, R., Guillaume P. Vanlanduit S., De Belder K., Rolain Y., 2004 Identification of Young’s modulus from broadband modal analysis experiments. Mechanical Systems and Signal Processing 18, 2004, 699-726. [CrossRef] [Google Scholar]
  6. Blanc, R. H.">, 1971. Détermination de l’équation de comportement des corps visco-élastiques linéaires par une méthode d’impulsion. Ph. D. Thesis, Université d’Aix-Marseille, published in part in Problèmes de la Rhéologie (W.K. Nowacki, editor), 65-85. IPPT PAN, Warsaw, 1973. [Google Scholar]
  7. Blanc, R.H., 1993. Transient wave propagation methods for determining the viscoelastic properties of solids. Journal of Applied Mechanics, 60, 763-768. [CrossRef] [Google Scholar]
  8. Lundberg, B., Blanc, R.H., 1988. Determination of mechanical material properties from the two-point response of an impacted linearly viscoelastic rod specimen. J. Sound Vib. 137, 483–493. [Google Scholar]
  9. Lundberg, B., Ödeen, S., 1993-. In situ determination of the complex modulus from strain measurements on an impacted structure. J. Sound Vibration 167, 413-419. [CrossRef] [Google Scholar]
  10. Hillström, L., Mossberg, M., Lundberg, B., 2000. Identification of complex modulus from measured strains on an axially impacted bar using least squares. J. Sound Vib. 230, 689–707. [Google Scholar]
  11. Othman, R., 2002. Extension du champ d’application du système des barres de Hopkinson aux essais à moyennes vitesses de déformation. Ph. D. Thesis, Ecole Polytechnique, France. [Google Scholar]
  12. Mousavi, S., Nicolas, D.F., Lundberg, B., 2004. Indetification of complex moduli and Poisson’s ratio from measured strains on an impacted bar. J. Sound Vibration 277, 971-986. [CrossRef] [Google Scholar]
  13. Zhao, H., Gary, G., 1995. A three dimensional analytical solution of longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques. J. Mech. Phys. Solids 43, 1335–1348. [CrossRef] [Google Scholar]
  14. Landau, L., Lifchitz, E., 1960. Electrodynamics of continuous media. Pergamon Press, Oxford, New York. [Google Scholar]
  15. Landau, L., Lifchitz, E., 1980. Statistical Physics. Pergamon Press, Oxford, New York. [Google Scholar]
  16. Golden, J., 2005. A proposal concerning the physical rate of dissipation in materials with memory. Quarterly Appl. Math., 63, 117-155. [Google Scholar]
  17. Hanyga, A., 2005. Physically acceptable viscoelastic models. In Trends in Applications of Mathematics to Mechanics, Y. Wang and K. Hutter eds. Shaker Verlag, Aachen, 2005. See also http://www.geo.uib.no/hjemmesider/andrzej/. [Google Scholar]
  18. Bouleau, N., 1999, Visco-élasticité et Processus de Levy, Potential Analysis, 11, 289-302. [Google Scholar]
  19. Krein, M., Nudelman, A., 1998. An interpolation approach in the class of Stieltjes functions and its connection with other problems. Integr. Equ. Oper. Theory 30, 251-278. [CrossRef] [Google Scholar]
  20. Gu, G., Xiong, D., Zhou, K., 1993. Identification in using Pick’s interpolation. Systems & Control Letters 20, 263-272. [CrossRef] [Google Scholar]
  21. Kolsky, H., 1963. Stress Waves in Solids, Clarendon Press, Oxford. [Google Scholar]
  22. Othman, R., Blanc, R. H., Bussac, M. N., Collet, P., Gary, G., 2002. Identification de la relation de la dispersion dans les barres. C. R. Mécanique, 330, 849-855. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.