Open Access
Issue
EPJ Web of Conferences
Volume 26, 2012
DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 04008
Number of page(s) 6
Section Modeling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/20122604008
Published online 31 August 2012
  1. M.C. Shaw, 1984. Metal Cutting Principles, Clarendon Press, Oxford. [Google Scholar]
  2. P. L. B. Oxley, 1989. The Mechanics of Machining: An Analytical Approach to Assessing Machinability. Ellis Horwood Limited Publishers, Chichester. [Google Scholar]
  3. R. Komanduri, T. Schroeder, J. Hazra, B. F. von Turkovich, D. G. Flom. On the catastrophic shear instability in high-speed machining of an AISI 4340 steel. Journal of Engineering for Industry, 1982, 104: 121∼131 [CrossRef] [Google Scholar]
  4. M. Eugene Merchant. Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip. Journal of Applied Mechanics, 1945, 16: 267∼275. [Google Scholar]
  5. Piispanen, V. Theory of formation of metal chips. Journal of Applied Physics, 1948, 19: 876∼881. [NASA ADS] [CrossRef] [Google Scholar]
  6. D. Buryta, R. Sowerby, I. Yellowley. Stress distribution on the rake face during orthogonal machining. Int. J. Mach. Tools Manufact, 1994, 34: 721∼739. [CrossRef] [Google Scholar]
  7. M. A. Davies, A. L. Cooke and E. R. Larsen. High bandwidth thermal microscopy of machining AISI 1045 steel. CIRP, Annals-Manufacturing Technology. 2005, 54(1): 63∼66 [CrossRef] [Google Scholar]
  8. T. D. Marusich, M. Ortiz. Modelling and simulation of high-speed machining. Int. J. Num. Meth. Eng, 1995, 38: 3675∼3694 [Google Scholar]
  9. A. J. Shih. Finite element simulation of orthogonal cutting. Journal of Engineering for Industry, yr1995, 117: 84∼93. [CrossRef] [Google Scholar]
  10. R.F. Recht. Catastrophic thermoplastic shear. Journal of Applied Mechanics, 1964, 31: 189∼193. [Google Scholar]
  11. R. J. Clifton, 1980. Report to the NRC Committee on Material Responses to Ultrasonic Loading Rates. [Google Scholar]
  12. Y.L. Bai, Thermo-plastic instability in simple shear. J. Mech. Phys. Solids C 1982, 30: 195∼207 [Google Scholar]
  13. T.J. Burns, and M.A. Davies. 1997, Nonlinear Dynamics Model for Chip Segmentation in Machining. 79, 447. [Google Scholar]
  14. Molinari, A., Musquar, C., Sutter, G., 2002. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling. Int. J. Plast. 18, 443. [Google Scholar]
  15. W. Ma, X. W. Li, L. H. Dai, L. Ling, 2012. Instability criterion of materials in combined stress states and its application to orthogonal cutting process. Int. J. Plast., 30∼31, 18. [Google Scholar]
  16. C. Fressengeas, A. Molinari. Instability and localization of plastic flow in shear at high strain rates. J. Mech. Phys. Solids, 1987, 35(2): 185∼211. [Google Scholar]
  17. L. Anand, K. H. Kim, T. G. Shawki. Onset of shear localization in viscoplastic solids. J. Mech. Phys. Solids, 1987, 35(4): 407∼429. [CrossRef] [Google Scholar]
  18. Gordon R. Johnson, WilliamH. Cook. 1985. Fracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1): 31∼48. [CrossRef] [Google Scholar]
  19. G. G. Ye, S. F. Xue, W. Ma, M. Q. Jiang, Z. Ling, X. H. Tong, L. H. Dai. 2012. Cutting AISI 1045 steel at very high speeds. International Journal of Machine Tools & Manufacture. 56, 1–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.