Open Access
EPJ Web of Conferences
Volume 45, 2013
EFM12 – Experimental Fluid Mechanics 2012
Article Number 01129
Number of page(s) 12
Published online 09 April 2013
  1. E.P. Dyban, A.I.Mazur, Convective heat transfer in jet–type flow past bodies (in Russian, Naukovadumka, Kiev, 1982) [Google Scholar]
  2. G.G. Stokes, Transactions of the Cambridge Philosophical Society, IX, 8 (1851) [Google Scholar]
  3. R. C. Martinelli, L.M.K. Boelter, Proc. of 5thInternational Congress of Applied Mechanics, (Cambridge, Mass., USA, 1938) [Google Scholar]
  4. W. Linke W. Hufschmidt, Chemie–Ingenieur Technik 30, 159 (1958) [Google Scholar]
  5. V. Tesař, P. Topinka, Czechoslovak Certificate of Authorship Nr. 263 898, filed December 1987 [Google Scholar]
  6. V. Tesař, Chemical Engineering Research and Design, 87, 181 (2009) [CrossRef] [Google Scholar]
  7. V. Tesař, Z. Trávníček, Journal of Visualization., 8, 91 (2005) [CrossRef] [Google Scholar]
  8. V. Tesař, L. Marvan L., Acta polytechnica ̶ PráceČVUT v Praze, Nr. 4, Series II, Praha 1989 [Google Scholar]
  9. R.H. Page, P.S. Chinnock J. Sezeed-Yagoobi, Journal of Thermophysics and Heat Transfer 10, 380 (1996) [CrossRef] [Google Scholar]
  10. W.G. Hill, P.R. Greene, Journal of Fluids Engineering 99, 520 (1997) [CrossRef] [Google Scholar]
  11. S. Narumanchi, et al., Single-phase Self-OscillatingJets for Enhanced Heat Transfer (Conference paper SemiTherm 2008, San Jose, Calif.) [Google Scholar]
  12. V. Tesař., Sensors and Actuators A: Physical 152, 182 (2009) [CrossRef] [Google Scholar]
  13. V. Tesař C.–H. Hung W. B. J. Zimmerman., Sensors and Actuators A: Physical 125, 159 (2006) [CrossRef] [Google Scholar]
  14. V. Tesar H.C.H. Bandalusena, Experiments in Fluids 50, 1225 (2010) [Google Scholar]
  15. V. Tesař V., The Problem of Off–Axis Transfer–Effect Extremes in Impinging Jets ( Proc. of XVIIth international scientific conference, 187, Herlany, Slovakia, June 1998) [Google Scholar]
  16. E.J. Nielsen, et al., AIAA Journal 1, . 1210 (1963) [Google Scholar]
  17. J. O. Hinze, Turbulence (McGraw–Hill Book Company, New York, 1975) [Google Scholar]
  18. V. Tesař V., Research report Z-0149̸97, ČVUT Praha, September 1997 [Google Scholar]
  19. V. Tesař V., Damping of oscillations in the near-wall layer of impinging jet flows (Proceedings of WORKSHOP 98, the 7th University-Wide Seminar, 535, ČVUT Praha,February 1998) [Google Scholar]
  20. V. Tesař, Excited Axisymmetric Impinging Flows(Proc. of Conf. "Engineering Mechanics '98", vol.4 p.757, Svratka, Czech Republic, May1998) [Google Scholar]
  21. V. Tesař, Chemical Engineering Research and Design, 89, 436 (2011) [CrossRef] [Google Scholar]
  22. V. Tesař, Sensors and Actuators A – Physical, 179, 211 (2012) [CrossRef] [Google Scholar]
  23. C. O. Popiel, L. Boguslawski, Effect of flow structure on the heat or mass transfer on a flat plate in impinging round jet(Proc. of 2nd UK National Conf. on Heat Transfer,,vol.1p.663 Univ. of Strathclyde, (1988) [Google Scholar]
  24. J.–M. Buchlin, M. Laperches, Detailed investigation of aerothermal behaviour of confined impinging jet(Proc. of Conf. QUIRT Quantitative Infrared Thermography,p.258, Lodz,Poland, (1988) [Google Scholar]
  25. R. Gardon, J. C. Akfirat, Int. Journal of Heat and Mass Transfer, 8, 1187 (1965) [Google Scholar]
  26. G. M. Carlomagno, G. Cardone, Experiments in Fluids, 49, 1187 (2010) [Google Scholar]
  27. V.Tesař, Z. Randa, Processing information obtained from thermochromic liquid crystals (Proc. of Conf. ‘Experimental Fluid Mechanics 2007’, Liberec, November 2007) [Google Scholar]
  28. Y.M. Chung, K. H. Luo, Journal of Heat Transfer 124, 1039 (2002) [CrossRef] [Google Scholar]
  29. N. Zuckerman, N. Lior, Advancers in Heat Transfer 39, 565 (2006) [Google Scholar]
  30. J. M. Buchlin, Journal of Applied Fluid Mechanics, . 4, 137 (2011) [Google Scholar]
  31. Z.Trávníček, T. Hyhlík, F.Maršík, Synthetic jet impingement heat/mass transfer (Proc. of 16th Internat. Symp. on Transport Phenomena, Prague, 2005) [Google Scholar]
  32. A. M. Al-Garni, Flow Measurement and Instrumentation 18, 95 (2007) [CrossRef] [Google Scholar]
  33. T. Persoons, A. Hoefnages, E. Van den Bulck, Experiments in Fluids 40, 555 (2006) [CrossRef] [Google Scholar]
  34. V. Tesař, J. Barker, Journal of Visualisation, 5,261(2002) [Google Scholar]
  35. Z. Tráníček, V. Tesař, International Journal of Heat and Mass Transfer, 47,2329(2004) [Google Scholar]
  36. Z. Tráníček, V. Tesař, International Joural of Heat and Mass Transfer, 47, 2329 (2004) [Google Scholar]
  37. V. Tesař, Z. Tráníček, Chemical Engineering Journal, 144, 312 (2008) [CrossRef] [Google Scholar]
  38. Z. Tráníček, V. Tesař, Experimental Thermal and Fluid Science, 44, 565 (2013) [CrossRef] [Google Scholar]
  39. V. Tesař, M. Jílek, Z. Randa, Wall Pressure Distributions Under Impinging Annular Jets (Proc. of 20th Internat. Conf., Kouty nad Desnou, 2001) [Google Scholar]
  40. V. Tesař, Z. Tráníček,, Pulsating and Synthetic Impinging Jets for High Heat and Mass Transfer Rates (Proc. of ESDA ýth Biennial ASME Cong.,Manchester 2004) [Google Scholar]
  41. V. Tesař,, Conditions on the Wall under a Pair of Phase-Shifted, Impinging Hybrid–Synthetic Annular Jets (Proc. of ISFV12, Göttingen, 2006) [Google Scholar]
  42. Z. Tráníček, et al., Bifurcated and Helical Impinging Jet Controlled by Azimuthally Arranged Synthetic Jet(Proc. of HEFAT2007, Sun City, SouthAfrica, 2007) [Google Scholar]
  43. Z. Tráníček, V. Tesař Synthetic Jets used to Control Spreading of an Annular Impinging Jet(Proc. of ISFV13 – 13th Intern. Symp. on Flow Visualization and FLUVISU12 – 12th French Congr. on Visualization in Fluid Mechanics, Nice, France,2008) [Google Scholar]
  44. V. Tesař, J. Kordík, Sensors and Actuators A –Physical, 191(,24(2012) [Google Scholar]
  45. Z. Tráníčeketal.,, International Journal of Heat and Mass Transfer, 55, 1279(2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.