Open Access
Issue
EPJ Web of Conferences
Volume 54, 2013
New Strategies for Energy Generation, Conversion and Storage
Article Number 01014
Number of page(s) 26
Section Lectures
DOI https://doi.org/10.1051/epjconf/20135401014
Published online 26 June 2013
  1. BP, Statistical Review of World Energy 2012, Historical data 1965-2011. Available online at: http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481, Utilized 2012-07-13. [Google Scholar]
  2. Giampietro M., Ulgiati S. and Pimentel D., BioScience, 47 (1997) 587. [CrossRef] [Google Scholar]
  3. FAO, How to Feed the World in 2050. (2009) Available online on: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. [Google Scholar]
  4. FAO, Food Price Index, (2012) Available online at: http://www.fao.org/worldfoodsituation/wfs-home/foodpricesindex/en/, Utilized 2012-07-19. [Google Scholar]
  5. US Department of Energy, Brent Crude Oil Spot Price (2012) Source: US Department of Energy via wikiposit.org, available online at: http://wikiposit.org/uid?DOE.RBRTE Update: http://wikiposit.org/w?action=dl&dltypes=comma%20separated&sp=monthly &uid=DOE.RBRTE. [Google Scholar]
  6. IEA, Potential contribution of Bioenergy to the World’s Future Demand. (2007) IEA Bioenergy: ExCo 2007:02. Available online at: http://www.idahoforests.org/img/pdf/PotentialContribution.pdf. [Google Scholar]
  7. Ladani S. and Vinterbäck J., Global Potential for Sustainable Biomass for Energy, Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Report 013 (2009). Available online at: http://pub.epsilon.slu.se/4523/1/ladanai_et_al_100211.pdf. [Google Scholar]
  8. Beringer T., Lucht W. and Schapoff S., GCB Bioenergy, 3 (2011) 299. [CrossRef] [Google Scholar]
  9. Hoogwijk M., Faaij A., van den Broek R., Berndes G., Gielen D. and Turkenburg W., Biomass Bioen., 25 (2003) 119. [CrossRef] [Google Scholar]
  10. Fischer G. and Schrattenholzer L., Biomass Bioen., 20 (2001) 151. [CrossRef] [Google Scholar]
  11. European Biomass Industry Association, Biomass resources and production potential (2012) Available online at: http://www.eubia.org/215.0.html. [Google Scholar]
  12. Smeets E., Faaij A. and Lewandowski I., A Quickscan of Global Bioenergy Potentials to 2050 – An analysis of the regional availability of biomass resources for export in relation to the underlying factors. Report NWS-E-2004-109 (2004), FAIR Biotrade Project. Available online at: http://www.riaed.net/IMG/pdf/A_quickscan_of_global_bioenergy_potentials_to_2050.pdf. [Google Scholar]
  13. Johansson K., Liljequist K., Ohlander L. and Aleklett K., Ambio, 39 (2010) 91. [CrossRef] [PubMed] [Google Scholar]
  14. Muradov N. Z. and Veziroglu T. N., Int. J. Hydrogen En., 33 (2008) 6804. [CrossRef] [Google Scholar]
  15. Butzen S. and Haefele D., Dry-grind Ethanol Production from Corn (2012) Available at https://www.pioneer.com/home/site/ca/template.CONTENT/products/end-use/htf/guid.B6C03E1D-1585-429E-ABA8-104FB904EB63, utilized 2012-06-17. [Google Scholar]
  16. Johansson K. and Liljequist K., Can agriculture provide us with both food and fuel? - A survey of present agricultural production (UPTEC ES 09 011, Uppsala) 2009. [Google Scholar]
  17. Bernesson S., Nilsson D. and Hansson P.-A., Biomass Bioen., 26 (2004) 545. [CrossRef] [Google Scholar]
  18. Biofuel Express (2008). Available at: http://www.biofuel-express.com/biodiesel_production_overview_s, utilized 2012-06-17. [Google Scholar]
  19. Anker Thyø K. and Wenzel H., Life cycle Assessment of Biogas from Maize silage and from Manure-for transport and for heat and power production under displacement of natural gas based heat works and marginal electricity in northern Germany, (2007). [Google Scholar]
  20. Alvarez H., Energiteknik, Vol. 3 (Studentlitteratur, Lund) 2006. [Google Scholar]
  21. Höök M. and Aleklett K., Int. J. En. Res., 34 (2010) 848, http://dx.doi.org/10.1002/er.1596. [CrossRef] [Google Scholar]
  22. Abbasi T. and Abbasi S. A., Ren. Sust. En. Rev., 14 (2010) 919. [CrossRef] [Google Scholar]
  23. Zhu J. Y. and Zhuang X. S., Prog. En. Combus. Sci., 38 (2012) 583. [CrossRef] [Google Scholar]
  24. Cherubini F. and Ulgiati S., Appl. En., 87 (2010) 47. [CrossRef] [Google Scholar]
  25. Sues A., Juraščík M. and Ptasinski K., Energy, 35 (2010) 996. [CrossRef] [Google Scholar]
  26. Rahimpour M. R., Jokar S. M. and Jamshidnejad Z., Chem. Engin. Res. Design, 90 (2012) 383. [CrossRef] [Google Scholar]
  27. Ghasemi S., Sorhabi M. and Rahmani M., Chem. Engin. Res. Design, 87 (2009) 1582. [CrossRef] [Google Scholar]
  28. Guinée J. B., Gorrée M., Heijungs R., Huppes G., Kleijn R., Koning A. de, Oers L. van, Wegener Sleeswijk A., Suh S., Udo de Haes H. A., Bruijn H. de, Duin R. van and Huijbregts M. A. J., Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. (Kluwer Academic Publishers, Dordrecht) 2002, ISBN 1-4020-0228-9. [Google Scholar]
  29. UNEP (United Nations Environment Programme). Evaluation of Environmental Impacts in Life Cycle Assessment (United Nations Publication) 2003. ISBN: 92- 807-2144-5. Available online at: http://www.unep.fr/shared/publications/pdf/3234- EvalLifeCycle.pdf. [Google Scholar]
  30. Ulgiati S., Crit. Rev. Plant Sci., 20 (2001) 71. [Google Scholar]
  31. Cleveland C. J., Constanza R., Hal C. A. S. and Kaufman R., Science, 225 (1984) 890. [CrossRef] [PubMed] [Google Scholar]
  32. Mulder K. and Hagens J. N., Ambio, 37 (2008). [CrossRef] [PubMed] [Google Scholar]
  33. Wall G., Exergy – A useful concept within resource accounting (Institute of Theoretical Physics, Göteborg, Sweden) 1977. [Google Scholar]
  34. Wall G., Res. En., 9 (1987) 55. [Google Scholar]
  35. Wall G., Energy, 15 (1990) 435. [CrossRef] [Google Scholar]
  36. Wall G., Sciubba E. and Naso V., Energy, 19 (1994) 1267. [CrossRef] [Google Scholar]
  37. Zaleta-Aguilar A., Ranz L. and Valero A., Energy conversion management, 39 (1998) 1911. [CrossRef] [Google Scholar]
  38. Jorgensen S. E. and Nielsen S. N., Energy, 32 (2007) 673. [CrossRef] [Google Scholar]
  39. Nilsson D., Biomass Bioen., 13 (1997) 63. [CrossRef] [Google Scholar]
  40. Bejan A., Advanced Engineering Thermodynamics (Wiley-Interscience, New York) 1998. [Google Scholar]
  41. Wall G., Life Cycle Exergy Analysis of wind power. in 2nd International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS2) 19-21 June, 2011, Nisyros, Greece. Available online at: http://www.exergy.se/ftp/lceawp.pdf. [Google Scholar]
  42. De Mora E. F., Torres C. and Valero A., Energy, (2012) 1. [Google Scholar]
  43. Gaudreau K., Roydon A. F. and Murphy S., Sustainability, 1 (2009) 1444; doi: 10.3390/su1041444 [CrossRef] [Google Scholar]
  44. Gaudreau K., Exergy Analysis and Resource Accounting. Master thesis in Environment and Resource Science, University of Waterloo (2009). [Google Scholar]
  45. Odum H. T., Environmental Accounting: EMERGY and environmental decision making (John Wiley, New York) 1996. [Google Scholar]
  46. Odum H. T., Environment, power, and society – For the twenty-first century: The hierarchy of energy (Columbia University Press, New York) 2007. [Google Scholar]
  47. Brown M. and Ulgiati S., Ambio, 28 (1999) 486. [Google Scholar]
  48. Björklund J., Emergy Analysis to Assess Ecological Sustainability. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, 2000. [Google Scholar]
  49. Nørretranders T., Mærk verden (Agraria 242) 1991, ISBN 10:91-0-057070-2. [Google Scholar]
  50. Box G. E. P., Robustness in the strategy of scientific model building. In Robustness in statistics, edited by Launer R. L. and Wilkinson G. N. (Academic Press, New York) 1979, pp. 201–236. [Google Scholar]
  51. Ahlgren S., Baky A., Bernesson S., Nordberg Å., Norén O. and Hansson P.-A., Future vehicle fuel supply for Swedish agriculture. Department of Energy and Technology, Swedish University of Agricultural Sciences, Report 020, Uppsala, 2010. [Google Scholar]
  52. Pollan M., The Omnivore’s Dilemma – The search for a perfect meal in a fast-food world (Bloomsbury Publishing Plc, London) 2006, ISBN 978-1-4088-1218-1. [Google Scholar]
  53. Berneson S. and Nilsson D., Straw as an energy source – a review of existing knowledge, Rapport miljö och teknik 07 (2005), Uppsala. [Google Scholar]
  54. Sathre R., O’Connor J., Environ. Sci. Pol., 13 (2010) 104. [CrossRef] [Google Scholar]
  55. Eriksson E., Gillespre A. R., Gustavsson L., Langvall M., Olsson M., Sahtre R. and Stendal J., Integrated carbon analysis of forest management practices and wood substitution. NRC Research Press Website. Can. J. For. Res., 37 (2007) 671. [Google Scholar]
  56. Gustavsson L., Madlener R., Hoen H.-F., Jungmeier G., Karjalainen T., Klöhn S., Mahapatra K., Pohjola J., Solberg B. and Spelter H., Mitigation and Adaptation Strategies for Global Change, 11 (2006) 1097. [CrossRef] [Google Scholar]
  57. Popper K., Objective Knowledge, 2nd edition (Oxford University Press) 1979. [Google Scholar]
  58. Hill J., Nelson E., Tilman D., Polasky S. and Tiffany D., Proc. Natl. Acad. Sci. U.S.A., 103 (2006) 11206. [CrossRef] [Google Scholar]
  59. Pimentel D. and Patzek T. W., Nat. Resour. Res., 14 (2005). [CrossRef] [Google Scholar]
  60. Shapouri H., Duffield J., McAloon A and Wang M., The 2001 Net Energy Balance of Corn-Ethanol (preliminary) (US Department of Agriculture, Washington, DC) 2004. [Google Scholar]
  61. Börjesson P., Livscykelanalys av Salixproduktion. Lunds tekniska högskola. Institutionen för teknik och samhälle. Avd. för miljö och energisystem. Rapport nr 60, Lund, 2006. [Google Scholar]
  62. Felix E. and Tilley D. R., Energy, 34 (2009) 410. [CrossRef] [Google Scholar]
  63. Silva Lora E. E., Escobar Palacio J. E., Rocha M. H., Grillo Renó M. L., Venturini O. J. and Almazán del Olmo, Energy, 36 (2011) 2097. [CrossRef] [Google Scholar]
  64. Venturi P. and Venturi G., Biomass Bioen., 25 (2003) 235. [CrossRef] [Google Scholar]
  65. Kallivruossis L., Natsis A. and Papadakis G., Biosys. Engin., 81 (2002) 63. [Google Scholar]
  66. Hovelius K. and Hansson P.-A., Biomass Bioen., 17 (1999) 279. [CrossRef] [Google Scholar]
  67. Shie J.-L., Chang C.-Y., Chen C.-S., Shaw D.-G., Chen Y.-H., Kuan W.-H. and Ma H.-K., Bioresour. Technol., 102 (2011) 6735. [CrossRef] [PubMed] [Google Scholar]
  68. Prade T., Svensson S.-E. and Mattson J. E., Biomass Bioen., 40 (2012) 36. [CrossRef] [Google Scholar]
  69. Ciotola R. J., Lansing S. and Martin J. F., Ecol. Engin., 37 (2011) 1681. [CrossRef] [Google Scholar]
  70. Rehl T., Lansche J. and Müller J., Ren. Sust. En. Rev., 16 (2012) 3766. [CrossRef] [Google Scholar]
  71. Pöschl M., Ward S. and Owende P., Appl. En., 87 (2010) 3305. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.