Open Access
Issue
EPJ Web of Conferences
Volume 56, 2013
International Workshop NUCPERF 2012: Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plant and Radioactive Waste Storage and Disposal (RILEM Event TC 226-CNM and EFC Event 351)
Article Number 01003
Number of page(s) 9
Section Session 1: Physical, Chemical and Mechanical Behavior: Physico-chemical Effect
DOI https://doi.org/10.1051/epjconf/20135601003
Published online 11 July 2013
  1. C. Bauer et L. Londe, « Conception, construction et fermeture d’alvéoles de stockage 334 MAVL - Dossier 2009 », Châtenay-Malabry, Rapport Andra C.NSY.ASTE.08.0166, 2008. [Google Scholar]
  2. A. Roulet, « Colis de stockage de déchets B », Rapport Andra C.NT.ASTE.04.0507.B, 2004. [Google Scholar]
  3. L.R. Van Loon and Z. Kopajtic Z. Complexation of Cu2+, Ni2+ and UO2 2+ by radiolytic degradation products of bitumen, rapport technique Nagra, N°90–18. (1990). [Google Scholar]
  4. L.R. Van Loon and W. Hummel. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: Effect on radionuclide speciation, rapport technique Nagra, N°95–08. (1995). [Google Scholar]
  5. M.F. Libert and I. Walczak. Effect of radio-oxidative ageing and pH on the release of soluble organic matter from bitumen, in ATALANTE 2000 Scientific Research on the Back-end of the Fuel Cycle for the 21th Century (2000), p. 4. [Google Scholar]
  6. I. Walczak, M.F. Libert S. Camaro and J.M.Blanchard. Quantitative and qualitative analysis of hydrosoluble organic matter in bitumen leachates, Agronomie, 21, p. 247–257. (2001). [CrossRef] [EDP Sciences] [Google Scholar]
  7. [7] A. Albrecht, A. Bertron, et M. Libert, « Microbial catalysis of redox reactions in concrete cells of nuclear waste repositories: a review and introduction », in Cement-Based Materials for Nuclear Waste Storage, Springer., F. Bart, C. Cau-dit-Coumes, F. Frizon, et S. Lorente, Éd. Berlin, 2012. [Google Scholar]
  8. [8] J. F. Devlin, R. Eedy, et B. J. Butler, « The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer », Journal of Contaminant Hydrology 46, no. 1-2, p. 81–97, nov. 2000. [Google Scholar]
  9. [9] L. Truche et G. Berger, « Etude expérimentale de la réduction des nitrates en présence d’hydrogène et de trois différents types d’acier: acier carbone, inox 316L et Hastelloy C276 », Rapport Andra, 2010. [Google Scholar]
  10. [10] L. Truche, G. Berger, L. Domergue, et A. Albrecht, « Abiotic nitrate reduction induced by carbon steel and hydrogen: Application to deep geological repositories », Applied Geochemistry, Under review. [Google Scholar]
  11. [11] M. Alquier, C. Kassim, B. Erable, A. Bertron, N. Jacquemet, C. Sablayrolles, C. Albasi, R. Basseguy, G. Escadeillas, P. Strehaiano, et A. Albrecht, « Etudes expérimentales de la réactivité des nitrates à l’interface bitume – eau cimentaire – ciment en conditions biotiques », Rapport Andra, 2012. [Google Scholar]
  12. [12] M. Libert, O. Bildstein, L. Esnault, M. Jullien, et R. Sellier, « Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories », Physics and Chemistry of the Earth, Parts A/B/C, vol. 36, no. 17-18, p. 1616–1623, 2011. [Google Scholar]
  13. [13] M. Libert, I. Pointeau, et R. Sellier, « Bactéries dénitrifiantes en milieu alcalin », Rapport Andra, 2012. [Google Scholar]
  14. [14] D.Y. Sorokin, A.J.H. Janssen, G. Muyzer. Biodegradation Potential of Halo(alkali) philic Prokaryotes. Critical reviews in environmental science and technology 42 ( 8): 811–856. , 2012. [CrossRef] [Google Scholar]
  15. I.P. Sarethy, Y. Saxena, A. Kapoor, M. Sharma, S.K. Sharma, V. Gupta, S. Gupta. Alkaliphilic bacteria: applications in industrial biotechnology. Journal of industrial microbiology & biotechnology 38 (7): 769–790. 2011. [CrossRef] [PubMed] [Google Scholar]
  16. M.R. Mormile, M.F. Romine, M.T. Garcia, A. Ventosa, T.J. Bailey and Peyton B.M. Halomonas campisalis sp, nov., a denitrifying, moderately haloalkaliphilic bacterium, Systematic and Applied Microbiology, 22, Issue 4, p. 551–558. (1999) [CrossRef] [PubMed] [Google Scholar]
  17. B.M. Peyton, M.R. Mormile and Petersen J.N. Nitrate reduction with Halomonas campisalis. Kinetics of denitrification at pH 9 and 12.5% NaCl, Wat. Res., 35(17), p. 4237–4242. (2001). [CrossRef] [Google Scholar]
  18. F. Berendes, G. Gottschalk, E. Heine-Dobbernack, E.R.B. Moore and Tindall B.J. Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works, Systematic and Applied Microbiology, 19, Issue 2, p. 158–167. . (1996). [CrossRef] [Google Scholar]
  19. B. Zhao, Q. An, Y.L. He, J.S. Guo, N2O and N-2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresource technology 116 : 379–385. 2012. [CrossRef] [PubMed] [Google Scholar]
  20. V. Mateju, S. Cizinska, J. Krejei and T. Janoch. Biological water denitrification: a review, Enzyme Microbe Technol. 14, p 170–183. (1992) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.