Open Access
Issue
EPJ Web of Conferences
Volume 58, 2013
TM 2012 – The Time Machine Factory [unspeakable, speakable] on Time Travel in Turin
Article Number 02001
Number of page(s) 12
Section The Spacetime Machine: Traveling from Micro to Macro Events
DOI https://doi.org/10.1051/epjconf/20135802001
Published online 05 September 2013
  1. R.H. Jones, Reductionism: Analysis and the Fullness of Reality (Bucknell University Press, 2000). [Google Scholar]
  2. S. Wolfram, A New Kind of Science (Wolfram Media, US, 2002). [Google Scholar]
  3. S. Weinberg, Is the Universe a Computer? (The New York Review of Books, 2002). [Google Scholar]
  4. R. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (Basic Books, US, 2005). [Google Scholar]
  5. O. Bertolami, The Adventures of Spacetime in Relativity and the Dimensionality of the World, Ed. V. Petkov (Springer 2006). [Google Scholar]
  6. S. Weinberg, Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature (Pantheon Books, US, 1992). [Google Scholar]
  7. O. Bertolami, in Boletim da Sociedade Portuguesa de Matemática, 193–221 (2010). [Google Scholar]
  8. J. Wheeler, Hermann Weyl and the Unity of Knowledge (1986); [Google Scholar]
  9. http://www.weylmann.com/wheeler.pdf. [Google Scholar]
  10. A. Sakahrov, Dokl. Akad. Nauk Ser. Fiz. 177, 70-71 (1967); [Google Scholar]
  11. Gen.Rel.Grav. 32, 365–367 (2000). [Google Scholar]
  12. K. Akama, Prog. Theor. Phys. 60, 1900 (1978); [Google Scholar]
  13. K. Akama, H. Terasawa, Gen. Rel. Grav. 15, 201 (1983). [CrossRef] [Google Scholar]
  14. S. Adler, Rev. Mod. Phys. 54, 729 (1982), [CrossRef] [Google Scholar]
  15. Erratum-ibid. 55, 837 (1983). [Google Scholar]
  16. F. David, A. Strominger, Phys. Lett. B143, 125 (1984). [Google Scholar]
  17. A. Ashtekar, J. Lewandowski, Classical and Quantum Gravity 21, R53–152 (2004). [Google Scholar]
  18. P. Hořava Phys. Rev. D79, 084008 (2009). [Google Scholar]
  19. M. Visser, Phys. Rev. D80, 025011 (2009). [Google Scholar]
  20. S. Chadha, H. B. Nielsen, Nucl. Phys. B217, 125 (1983) . [CrossRef] [Google Scholar]
  21. V.Alan Kostelecký, Topics in Lorentz and CPT violation, arXiv:1010.4559. [Google Scholar]
  22. R. L. Arnowitt, S. Deser, C. W. Misner, [gr-qc/0405109]. [Google Scholar]
  23. S. Mukohyama, Class. Quant. Grav. 27, 223101 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  24. E. N. Saridakis, Aspects of Horava-Lifshitz cosmology, arXiv:1101.0300 [astro-ph.CO]. [Google Scholar]
  25. O. Bertolami, C. Zarro, Phys. Rev. D84, 044042 (2011). [Google Scholar]
  26. N. Seiberg, Emergent Spacetime, arXiv:hep-th/0601234. [Google Scholar]
  27. J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [Google Scholar]
  28. O. Bertolami, J. Páramos, The experimental status of Special and General Relativity, arXiv:1212.2177 [gr-qc]. [Google Scholar]
  29. O. Bertolami, What if ... General Relativity is not the theory?, arXiv:1112.2048 [gr-qc]. [Google Scholar]
  30. O. Bertolami, The Mystical Formula and the Mystery of Khronos in Minkowski Spacetime: A Hundred Years Later, Ed. V. Petkov (Springer 2010). [Google Scholar]
  31. O. Bertolami, F.S.N. Lobo, NeuroQuantol. 7, 1–15 (2009). [Google Scholar]
  32. C. Rovelli, Phys. Rev. D65, 044017 (2002). [Google Scholar]
  33. B. Coll, A. Tarantola, Using pulsars to define space-time coordinates, arXiv:0905.4121 [gr-qc]. [Google Scholar]
  34. K. Gödel, Rev. Mod. Phys. 21, 447–450 (1949). [CrossRef] [Google Scholar]
  35. J. R. Gott, Phys. Rev. Lett. 66, 1126 (1991). [Google Scholar]
  36. S. Deser, R. Jackiw, G. t’Hooft, Phys. Rev. Lett. 68, 267 (1992). [CrossRef] [PubMed] [Google Scholar]
  37. S. Deser, Class. Quant. Grav. 10, S67 (1993). [CrossRef] [Google Scholar]
  38. M. Morris, K. S. Thorne and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  39. F. S. N. Lobo, Phys. Rev. D71, 084011 (2005); [Google Scholar]
  40. Phys. Rev. D73, 064028 (2006); [Google Scholar]
  41. R. Garattini and F. S. N. Lobo, Class. Quant. Grav. 24, 2401 (2007). [CrossRef] [MathSciNet] [Google Scholar]
  42. M. Alcubierre, Class. Quant. Grav. 11, L73 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  43. F. S. N. Lobo and M. Visser, Class. Quant. Grav. 21, 5871 (2004). [CrossRef] [Google Scholar]
  44. S. V. Krasnikov, Phys. Rev. D57, 4760 (1998). [Google Scholar]
  45. I. D. Novikov, Sov. Phys. JETP 68 3 (1989). [Google Scholar]
  46. S. W. Hawking, Phys. Rev. D46, 603–611 (1992). [Google Scholar]
  47. D. Deutsch, Phys. Rev. D44, 3197–3217 (1991). [Google Scholar]
  48. O. Bertolami, R. Z. Ferreira, Phys. Rev. D85 105050 (2012). [Google Scholar]
  49. O. Bertolami, C. Boehmer, T. Harko, F. S.N. Lobo, Phys. Rev. D 75 104016 (2007). [Google Scholar]
  50. M. S. Costa, C. Herdeiro, J. Penedones, N. Sousa, Nucl. Phys. B728, 148–178 (2005). [CrossRef] [Google Scholar]
  51. E. Verlinde, JHEP 1104 029 (2011). [Google Scholar]
  52. G. t’Hooft, “Dimensional Reduction in Quantum Gravity”, arXiv:gr-qc/9310026v2. [Google Scholar]
  53. L. Susskind, J. Math. Phys. 36, 6377 (1995). [CrossRef] [MathSciNet] [Google Scholar]
  54. J. Bekenstein, Phys. Rev. D23, 287 (1981). [Google Scholar]
  55. O. Bertolami, J. G. Rosa, C. Aragão, P. Castorina and D. Zappalà, Phys. Rev. D72, 025010 (2005); [Google Scholar]
  56. Mod. Phys. Lett. A21, 795 (2006). [Google Scholar]
  57. N. Seiberg and E. Witten, JHEP 9909, 032 (1999). [CrossRef] [Google Scholar]
  58. C. Bastos, O. Bertolami, N.C. Dias and J.N. Prata, J. Math. Phys. 49, 072101 (2008). [CrossRef] [Google Scholar]
  59. C. Bastos, O. Bertolami, N.C. Dias and J.N. Prata, Class. Quantum Grav. 28, 125007 (2011). [CrossRef] [Google Scholar]
  60. J. Jahn, Introduction to the Theory of Nonlinear Optimization, Springer (1996). [CrossRef] [Google Scholar]
  61. K. Bolonek and P. Kosinski, Phys. Lett. B547, 51 (2002). [Google Scholar]
  62. P. Kosinski and K. Bolonek, Acta Phys. Polon. B34, 2579 (2003). [Google Scholar]
  63. S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger, Phys. Rev. Lett. 100, 041101 (2008). [CrossRef] [PubMed] [Google Scholar]
  64. O. Bertolami, R. Queiroz, Phys. Lett. A375, 4116–4119 (2011). [Google Scholar]
  65. O. Bertolami, Int. J. Mod. Phys. D18, 2303 (2009). [Google Scholar]
  66. H. Everett, Rev. Mod. Phys. 29, 454–462 (1957). [CrossRef] [MathSciNet] [Google Scholar]
  67. A. Linde, Phys. Lett. B175, 395–400 (1986). [Google Scholar]
  68. L. Susskind, The Anthropic Landscape of String Theory, hep-th/0302219. [Google Scholar]
  69. R. Bousso and J. Polchinski, JHEP 0006, 006 (2000). [Google Scholar]
  70. S. Weinberg, Living in the Multiverse, hep-th/0511037. [Google Scholar]
  71. J. Polchinski, The Cosmological Constant and the String Landscape, hep-th/0603249. [Google Scholar]
  72. R. Holman, L. Mersini-Houghton, Phys. Rev. D74,123510 (2006). [Google Scholar]
  73. G.F.R. Ellis, On horizons and the cosmic landscape, astro-ph/0603266. [Google Scholar]
  74. O. Bertolami, Gen. Rel. Grav. 40, 1891–1898 (2008). [CrossRef] [Google Scholar]
  75. A. Alonso-Serrano, C. Bastos, O. Bertolami, S. Robles-Perez, Phys. Lett. B719, 200–205 (2013). [Google Scholar]
  76. R. Bousso and L. Susskind, Phys. Rev. D85, 045007 (2012). [Google Scholar]
  77. Y. Nomura, Quantum Mechanics, Spacetime Locality, and Gravity, arXiv:1110.4630 [hep-th]; [Google Scholar]
  78. Ast. Rev. 7, 36 (2012). [Google Scholar]
  79. S. Weinberg, Ann. Phys. (NY). 194, 336-386 (1989); [CrossRef] [Google Scholar]
  80. Phys. Rev. Lett. 62, 485–488 (1989). [PubMed] [Google Scholar]
  81. O. Bertolami, J. G. Rosa, Phys. Rev. D71, 097901 (2005). [Google Scholar]
  82. O. Bertolami, Phys. Lett. A154, 225–229 (1991). [Google Scholar]
  83. T. Banks, Nucl. Phys. B309, 493–512 (1988). [CrossRef] [Google Scholar]
  84. J. Polchinski, Phys. Rev. Lett. 66, 397–400 (1991). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  85. O. Bertolami, V. Herdeiro, Non-Linearities in the Quantum Multiverse, arXiv:1208.0236 [gr-qc]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.