Open Access
Issue
EPJ Web of Conferences
Volume 68, 2014
ICASCE 2013 – International Conference on Advances Science and Contemporary Engineering
Article Number 00005
Number of page(s) 6
DOI https://doi.org/10.1051/epjconf/20146800005
Published online 28 March 2014
  1. Amorim. R.C. Constrained Intelligent KMeans:Improving Results with Limited Previous Knowledge. The Second International Conf. on Adv Eng Computing and Applications in Sciences (2008) [Google Scholar]
  2. Ahmad.N.H., Othman.I.R and Deni.M. Hierarchical Cluster Approach for Regionalization of Peninsular Malaysia Based on the Precipitation Amount. J. Phys.: Conf. Ser. 423 012018 (2013) [CrossRef] [Google Scholar]
  3. Brock. G., Pihur.V., Datta.S and Datta S. clValid: An R Package for Cluster Validation. Journal for Stastical Software. V 25 Issue 4 (2008) [Google Scholar]
  4. Han.J, Kamber.M, and Tung. A. K. H. Geographic Data Mining and Knowledge Discovery, chapter Spatial Clustering Methods in Data Mining: A Survey, pages 1–29. Taylor and Francis, (2001) [Google Scholar]
  5. Han.J., Kamber.M and Pei.J. Data Mining Concept and Techniques (Third Edition). Morgan Kaufmann-Elsevier (2012) [Google Scholar]
  6. Hartigan.J.A and Wong.M.A. A K-Means Clustering Algorithm-JSTOR J of the Royal Statistical Society. Series C (Applied Statistics), V 28, No. 1 (1979), pp. 100–108 (1975) [Google Scholar]
  7. Irwansyah. E. Bulding Damage Assessment Using Remote Sensing, Aerial Photograph and GIS Data: Case Study in Banda Aceh after Sumatra Earthquake 2004. Proc The 11th Seminar on Intelligent Tech and Its App-SITIA 2010 V 11 pp.57 (2010) [Google Scholar]
  8. Irwansyah.E and Hartati.S. Zonasi Daerah Bahaya Kerusakan Bangunan Akibat Gempa Menggunakan Algoritma SOM Dan Algoritma Kriging (in Bahasa). Seminar Nasional Teknologi Informasi (2012). [Google Scholar]
  9. Irwansyah E, Winarko E, Z.E Rashid and R.D Bekti. Earthquake Hazard Zonation Using Peak Ground Acceleration (PGA) Approach J. Phys.: Conf. Ser. 423 012018 (2013) [CrossRef] [Google Scholar]
  10. Jain. A.K. Data Clustering: 50 Years Beyond K-Means. Pattern Recognition Letters, 2009 [PubMed] [Google Scholar]
  11. Kumar.P and Wasan S.K.. IJCSNS Int J of Comp Science and Network Security, V 10 No.4 (2010) [Google Scholar]
  12. Likas,A., Vlassis, M. & Verbeek, J. The global k-means clustering algorithm, Pattern Recognition, V 36, p451–461 (2003) [CrossRef] [Google Scholar]
  13. MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proc. of 5th Berkley Symposium on Mathematical Statistics and Probability, Volume I: Statistics, pp. 281–297 (1967) [Google Scholar]
  14. Mirkin, B., Clustering for Data Mining: A Data Discovery Approach, Chapman and Hall/CRC, Boca Raton Fl. USA (2005) [Google Scholar]
  15. Pelleg.D and Moore.A. X-means: Extending K-means with Efficient Estimation of the Number of Clusters, ICML 2000 (2000) [Google Scholar]
  16. Sengara. I.W. Seismic Hazard and Microzonation For A District In Banda Aceh City Post 2004 Great Sumatra Earthquake. The 14th World Conf on Earthquake Eng (2008) [Google Scholar]
  17. Steinbach. M., Karypis. G & Kumar.V. A Comparison of Document Clustering Techniques (2000) [Google Scholar]
  18. Tangkitjaroenmongkol.R,Kaittisin.S & Ongwattanakul.S. Inbound Logistics Cassava Starch Planning With Application of GIS and K-means Clustering Methods in Thailand. 8th Intl Joint Conf on Comp Science and Soft Eng –JCSSE (2011) [Google Scholar]
  19. Tesfamariam.S and Saatcioglu.M. Seismic Vulnerability Assessment of Reinforced Concrete Buildings Using Hierarchical Fuzzy Rule Base Modeling. Earthquake Spectra. V 26 No 1 p235–256 (2010) [CrossRef] [Google Scholar]
  20. USGS. Historic World Earthquakes http://earthquake.usgs.gov/earthquakes/world/historical_country.php#indonesia. Last Mod: Nov 01 (2012) [Google Scholar]
  21. Williams G. Data Mining With Rattle and R: The Art of Excavating Data for Knowledge Discovery. Springer (2011) [Google Scholar]
  22. Zhang Y., Mao J. and Xiong Z. An efficient Clustering algorithm, In Proceedings of Second International Conference on Machine Learning and Cybernetics (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.