Open Access
EPJ Web of Conferences
Volume 70, 2014
1st International Conference on New Frontiers in Physics
Article Number 00040
Number of page(s) 18
Section Wednesday
Published online 10 April 2014
  1. E. Kiritsis, “D-branes in standard model building, gravity and cosmology,”, Fortsch. Phys. 52 (2004) 200 [CrossRef]
  2. [Phys. Rept. 421 (2005) 105–190; [CrossRef]
  3. Erratum ibid 429 (2006), 121–122] [ArXiv:hep-th/0310001].
  4. E. Kiritsis, A gauge theory for gravity. Talk given at the Meeting “Cosmology Strings and Black Holes” Nordita, Copenhagen, 18–21 April 2006.
  5. A. Kehagias and E. Kiritsis, “Mirage cosmology,” JHEP 9911 (1999) 022; [ArXiv:hep-th/9910174]. [CrossRef]
  6. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231
  7. [Int. J. Theor. Phys. 38 (1999) 1113] [ArXiv:hep-th/9711200]. [CrossRef] [MathSciNet]
  8. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183 [ArXiv:hep-th/9905111]. [CrossRef] [MathSciNet]
  9. G. ’t Hooft, “A Planar Diagram Theory For Strong Interactions,” Nucl. Phys. B 72 (1974) 461. [NASA ADS] [CrossRef]
  10. G. ’t Hooft, “Dimensional Reduction In Quantum Gravity,” [ArXiv:gr-qc/9310026].
  11. R. Sundrum, “Towards an effective particle-string resolution of the cosmological constant problem,” JHEP 9907 (1999) 001; [ArXiv:hep-ph/9708329]. [CrossRef]
  12. R. Sundrum, “Fat gravitons, the cosmological constant and sub-millimeter tests,”Phys. Rev. D 69 (2004) 044014; [ArXiv:hep-th/0306106]. [CrossRef]
  13. A. Zee, “Dark energy and the nature of the graviton,” [ArXiv:hep-th/0309032].
  14. C. Eling, R. Guedens and T. Jacobson, “Non-equilibrium Thermodynamics of Spacetime,” Phys. Rev. Lett. 96 (2006) 121301 [ArXiv:gr-qc/0602001]. [CrossRef] [MathSciNet] [PubMed]
  15. E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton,” [ArXiv:1001.0785][hep-th].
  16. E. Kiritsis, “Lorentz violation, Gravity, Dissipation and Holography,” JHEP 1301 (2013) 030 [ArXiv:1207.2325][hep-th]. [CrossRef]
  17. S. -S. Lee, “Background independent holographic description : From matrix field theory to quantum gravity,” JHEP 1210 (2012) 160 [ArXiv:1204.1780][hep-th]; [CrossRef]
  18. “Quantum Renormalization Group and Holography,” [ArXiv:1305.3908][hep-th].
  19. M. B. Green and J. H. Schwarz, “Supersymmetrical String Theories,” Phys. Lett. B 109 (1982) 444. [CrossRef]
  20. N. Berkovits, C. Vafa and E. Witten, “Conformal field theory of AdS background with Ramond-Ramond flux,” JHEP 9903 (1999) 018 [ArXiv:hep-th/9902098] [CrossRef]
  21. N. Berkovits, “Super-Poincare covariant quantization of the superstring,” JHEP 0004 (2000) 018 [ArXiv:hep-th/0001035] [CrossRef]
  22. C. G. Callan, Jr., E. J. Martinec, M. J. Perry and D. Friedan, “Strings in Background Fields,” Nucl. Phys. B 262 (1985) 593. [CrossRef] [MathSciNet]
  23. E. Kiritsis, “Dissecting the string theory dual of QCD,” Fortsch. Phys. 57 (2009) 396 [ArXiv:0901.1772][hep-th]. [CrossRef]
  24. H. Osborn, “Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories,” Nucl. Phys. B 363 (1991) 486. [CrossRef]
  25. H. Osborn, “Local couplings and Sl(2,R) invariance for gauge theories at one loop,” Phys. Lett. B 561 (2003) 174 [ArXiv:hep-th/0302119]. [CrossRef]
  26. H. Liu and A. A. Tseytlin, “D = 4 superYang-Mills, D = 5 gauged supergravity, and D = 4 conformal supergravity,” Nucl. Phys. B 533 (1998) 88 [ArXiv:hep-th/9804083]. [CrossRef]
  27. I. L. Buchbinder, N. G. Pletnev and A. A. Tseytlin, “’Induced’ N=4 conformal supergravity,” Phys. Lett. B 717 (2012) 274 [ArXiv:1209.0416][hep-th]. [CrossRef]
  28. J. Babington and J. Erdmenger, “Space-time dependent couplings in N=1 SUSY gauge theories: Anomalies and central functions,” JHEP 0506 (2005) 004 [ArXiv:hep-th/0502214]. [CrossRef]
  29. X. Dong, B. Horn, E. Silverstein and G. Torroba, “Perturbative Critical Behavior from Space-time Dependent Couplings,” Phys. Rev. D 86 (2012) 105028 [ArXiv:arXiv:1207.6663][hep-th]. [CrossRef]
  30. A. M. Polyakov, “Quantum geometry of bosonic strings,” Phys. Lett. B 103 (1981) 207. [CrossRef] [MathSciNet]
  31. E. S. Fradkin and A. A. Tseytlin, “Quantum Properties Of Higher Dimensional And Dimensionally Reduced Supersymmetric Theories,” Nucl. Phys. B 227 (1983) 252. [CrossRef] [MathSciNet]
  32. R. R. Metsaev and A. A. Tseytlin, “On Loop Corrections To String Theory Effective Actions,” Nucl. Phys. B 298 (1988) 109. [CrossRef]
  33. F. Bigazzi, R. Casero, A. L. Cotrone, E. Kiritsis and A. Paredes, “Non-critical holography and four-dimensional CFT’s with fundamentals,” JHEP 0510 (2005) 012 [ArXiv:hep-th/0505140]. [CrossRef]
  34. E. Kiritsis and C. Kounnas, “Dynamical topology change in string theory,” Phys. Lett. B 331 (1994) 51 [ArXiv:hep-th/9404092]. [CrossRef]
  35. A. Karch and E. Katz, “Adding flavor to AdS/CFT,” JHEP 0206 (2002) 043 [ArXiv:hep-th/0205236]. [CrossRef]
  36. T. Banks and A. Zaks, “On The Phase Structure Of Vector-Like Gauge Theories With Massless Fermions,” Nucl. Phys. B 196 (1982) 189. [CrossRef]
  37. E. Kiritsis, “Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals,” JHEP 0611 (2006) 049 [ArXiv:hep-th/0608088]; [CrossRef]
  38. O. Aharony, A. B. Clark and A. Karch, “The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture,” Phys. Rev. D 74 (2006) 086006 [ArXiv:hep-th/0608089]. [CrossRef] [MathSciNet]
  39. D. R. T. Jones, “Two Loop Diagrams In Yang-Mills Theory,” Nucl. Phys. 75 (1974) 531; [CrossRef]
  40. R. van Damme, “The Two Loop Renormalization Of The Gauge Coupling And The Scalar Potential For An Arbitrary Renormalizable Field Theory,” Nucl. Phys. B 227 (1983) 317 [CrossRef]
  41. [Erratum-ibid. B 239 (1984) 656,
  42. Erratum-ibid. B244 (1984) 549];
  43. “The Two Loop Renormalization Of The Yukawa Sector For An Arbitrary Renormalizable Field Theory,” Nucl. Phys. B 244 (1984) 105. [CrossRef]
  44. M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations In A General Quantum Field Theory. 1. Wave Function Renormalization,” Nucl. Phys. B 222 (1983) 83.; [CrossRef]
  45. “Two Loop Renormalization Group Equations In A General Quantum Field Theory. 2. Yukawa Couplings,” Nucl. Phys. B 236 (1984) 221; [CrossRef]
  46. “Two Loop Renormalization Group Equations In A General Quantum Field Theory. 3. Scalar Quartic Couplings,” Nucl. Phys. B 249 (1985) 70. [CrossRef]
  47. G. Ferretti, R. Heise and K. Zarembo, “New integrable structures in large-N QCD,” Phys. Rev. D 70 (2004) 074024 [ArXiv:hep-th/0404187]; [CrossRef]
  48. N. Beisert, G. Ferretti, R. Heise and K. Zarembo, “One-loop QCD spin chain and its spectrum,” Nucl. Phys. B 717 (2005) 137 [ArXiv:hep-th/0412029]. [CrossRef]
  49. I. Papadimitriou, “Holographic Renormalization of general dilaton-axion gravity,” JHEP 1108 (2011) 119 [ArXiv:1106.4826][hep-th]. [CrossRef]
  50. E. Kiritsis and V. Niarchos, “The holographic quantum effective potential at finite temperature and density,” JHEP 1208 (2012) 164 [ArXiv:1205.6205] [hep-th]. [CrossRef]
  51. C. Lovelace, “Stability of String Vacua. 1. A New Picture of the Renormalization Group,” Nucl. Phys. B 273 (1986) 413. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.