Open Access
EPJ Web of Conferences
Volume 70, 2014
1st International Conference on New Frontiers in Physics
Article Number 00040
Number of page(s) 18
Section Wednesday
Published online 10 April 2014
  1. E. Kiritsis, “D-branes in standard model building, gravity and cosmology,”, Fortsch. Phys. 52 (2004) 200 [CrossRef] [Google Scholar]
  2. [Phys. Rept. 421 (2005) 105–190; [CrossRef] [Google Scholar]
  3. Erratum ibid 429 (2006), 121–122] [ArXiv:hep-th/0310001]. [Google Scholar]
  4. E. Kiritsis, A gauge theory for gravity. Talk given at the Meeting “Cosmology Strings and Black Holes” Nordita, Copenhagen, 18–21 April 2006. [Google Scholar]
  5. A. Kehagias and E. Kiritsis, “Mirage cosmology,” JHEP 9911 (1999) 022; [ArXiv:hep-th/9910174]. [CrossRef] [Google Scholar]
  6. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [Google Scholar]
  7. [Int. J. Theor. Phys. 38 (1999) 1113] [ArXiv:hep-th/9711200]. [CrossRef] [MathSciNet] [Google Scholar]
  8. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183 [ArXiv:hep-th/9905111]. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. ’t Hooft, “A Planar Diagram Theory For Strong Interactions,” Nucl. Phys. B 72 (1974) 461. [NASA ADS] [CrossRef] [Google Scholar]
  10. G. ’t Hooft, “Dimensional Reduction In Quantum Gravity,” [ArXiv:gr-qc/9310026]. [Google Scholar]
  11. R. Sundrum, “Towards an effective particle-string resolution of the cosmological constant problem,” JHEP 9907 (1999) 001; [ArXiv:hep-ph/9708329]. [CrossRef] [Google Scholar]
  12. R. Sundrum, “Fat gravitons, the cosmological constant and sub-millimeter tests,”Phys. Rev. D 69 (2004) 044014; [ArXiv:hep-th/0306106]. [CrossRef] [Google Scholar]
  13. A. Zee, “Dark energy and the nature of the graviton,” [ArXiv:hep-th/0309032]. [Google Scholar]
  14. C. Eling, R. Guedens and T. Jacobson, “Non-equilibrium Thermodynamics of Spacetime,” Phys. Rev. Lett. 96 (2006) 121301 [ArXiv:gr-qc/0602001]. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton,” [ArXiv:1001.0785][hep-th]. [Google Scholar]
  16. E. Kiritsis, “Lorentz violation, Gravity, Dissipation and Holography,” JHEP 1301 (2013) 030 [ArXiv:1207.2325][hep-th]. [CrossRef] [Google Scholar]
  17. S. -S. Lee, “Background independent holographic description : From matrix field theory to quantum gravity,” JHEP 1210 (2012) 160 [ArXiv:1204.1780][hep-th]; [CrossRef] [Google Scholar]
  18. “Quantum Renormalization Group and Holography,” [ArXiv:1305.3908][hep-th]. [Google Scholar]
  19. M. B. Green and J. H. Schwarz, “Supersymmetrical String Theories,” Phys. Lett. B 109 (1982) 444. [CrossRef] [Google Scholar]
  20. N. Berkovits, C. Vafa and E. Witten, “Conformal field theory of AdS background with Ramond-Ramond flux,” JHEP 9903 (1999) 018 [ArXiv:hep-th/9902098] [CrossRef] [Google Scholar]
  21. N. Berkovits, “Super-Poincare covariant quantization of the superstring,” JHEP 0004 (2000) 018 [ArXiv:hep-th/0001035] [CrossRef] [Google Scholar]
  22. C. G. Callan, Jr., E. J. Martinec, M. J. Perry and D. Friedan, “Strings in Background Fields,” Nucl. Phys. B 262 (1985) 593. [CrossRef] [MathSciNet] [Google Scholar]
  23. E. Kiritsis, “Dissecting the string theory dual of QCD,” Fortsch. Phys. 57 (2009) 396 [ArXiv:0901.1772][hep-th]. [CrossRef] [Google Scholar]
  24. H. Osborn, “Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories,” Nucl. Phys. B 363 (1991) 486. [CrossRef] [Google Scholar]
  25. H. Osborn, “Local couplings and Sl(2,R) invariance for gauge theories at one loop,” Phys. Lett. B 561 (2003) 174 [ArXiv:hep-th/0302119]. [CrossRef] [Google Scholar]
  26. H. Liu and A. A. Tseytlin, “D = 4 superYang-Mills, D = 5 gauged supergravity, and D = 4 conformal supergravity,” Nucl. Phys. B 533 (1998) 88 [ArXiv:hep-th/9804083]. [CrossRef] [Google Scholar]
  27. I. L. Buchbinder, N. G. Pletnev and A. A. Tseytlin, “’Induced’ N=4 conformal supergravity,” Phys. Lett. B 717 (2012) 274 [ArXiv:1209.0416][hep-th]. [CrossRef] [Google Scholar]
  28. J. Babington and J. Erdmenger, “Space-time dependent couplings in N=1 SUSY gauge theories: Anomalies and central functions,” JHEP 0506 (2005) 004 [ArXiv:hep-th/0502214]. [CrossRef] [Google Scholar]
  29. X. Dong, B. Horn, E. Silverstein and G. Torroba, “Perturbative Critical Behavior from Space-time Dependent Couplings,” Phys. Rev. D 86 (2012) 105028 [ArXiv:arXiv:1207.6663][hep-th]. [CrossRef] [Google Scholar]
  30. A. M. Polyakov, “Quantum geometry of bosonic strings,” Phys. Lett. B 103 (1981) 207. [CrossRef] [MathSciNet] [Google Scholar]
  31. E. S. Fradkin and A. A. Tseytlin, “Quantum Properties Of Higher Dimensional And Dimensionally Reduced Supersymmetric Theories,” Nucl. Phys. B 227 (1983) 252. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. R. Metsaev and A. A. Tseytlin, “On Loop Corrections To String Theory Effective Actions,” Nucl. Phys. B 298 (1988) 109. [CrossRef] [Google Scholar]
  33. F. Bigazzi, R. Casero, A. L. Cotrone, E. Kiritsis and A. Paredes, “Non-critical holography and four-dimensional CFT’s with fundamentals,” JHEP 0510 (2005) 012 [ArXiv:hep-th/0505140]. [CrossRef] [Google Scholar]
  34. E. Kiritsis and C. Kounnas, “Dynamical topology change in string theory,” Phys. Lett. B 331 (1994) 51 [ArXiv:hep-th/9404092]. [CrossRef] [Google Scholar]
  35. A. Karch and E. Katz, “Adding flavor to AdS/CFT,” JHEP 0206 (2002) 043 [ArXiv:hep-th/0205236]. [CrossRef] [Google Scholar]
  36. T. Banks and A. Zaks, “On The Phase Structure Of Vector-Like Gauge Theories With Massless Fermions,” Nucl. Phys. B 196 (1982) 189. [CrossRef] [Google Scholar]
  37. E. Kiritsis, “Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals,” JHEP 0611 (2006) 049 [ArXiv:hep-th/0608088]; [CrossRef] [Google Scholar]
  38. O. Aharony, A. B. Clark and A. Karch, “The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture,” Phys. Rev. D 74 (2006) 086006 [ArXiv:hep-th/0608089]. [CrossRef] [MathSciNet] [Google Scholar]
  39. D. R. T. Jones, “Two Loop Diagrams In Yang-Mills Theory,” Nucl. Phys. 75 (1974) 531; [Google Scholar]
  40. R. van Damme, “The Two Loop Renormalization Of The Gauge Coupling And The Scalar Potential For An Arbitrary Renormalizable Field Theory,” Nucl. Phys. B 227 (1983) 317 [CrossRef] [Google Scholar]
  41. [Erratum-ibid. B 239 (1984) 656, [Google Scholar]
  42. Erratum-ibid. B244 (1984) 549]; [Google Scholar]
  43. “The Two Loop Renormalization Of The Yukawa Sector For An Arbitrary Renormalizable Field Theory,” Nucl. Phys. B 244 (1984) 105. [CrossRef] [Google Scholar]
  44. M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations In A General Quantum Field Theory. 1. Wave Function Renormalization,” Nucl. Phys. B 222 (1983) 83.; [Google Scholar]
  45. “Two Loop Renormalization Group Equations In A General Quantum Field Theory. 2. Yukawa Couplings,” Nucl. Phys. B 236 (1984) 221; [CrossRef] [Google Scholar]
  46. “Two Loop Renormalization Group Equations In A General Quantum Field Theory. 3. Scalar Quartic Couplings,” Nucl. Phys. B 249 (1985) 70. [CrossRef] [Google Scholar]
  47. G. Ferretti, R. Heise and K. Zarembo, “New integrable structures in large-N QCD,” Phys. Rev. D 70 (2004) 074024 [ArXiv:hep-th/0404187]; [CrossRef] [Google Scholar]
  48. N. Beisert, G. Ferretti, R. Heise and K. Zarembo, “One-loop QCD spin chain and its spectrum,” Nucl. Phys. B 717 (2005) 137 [ArXiv:hep-th/0412029]. [CrossRef] [Google Scholar]
  49. I. Papadimitriou, “Holographic Renormalization of general dilaton-axion gravity,” JHEP 1108 (2011) 119 [ArXiv:1106.4826][hep-th]. [CrossRef] [Google Scholar]
  50. E. Kiritsis and V. Niarchos, “The holographic quantum effective potential at finite temperature and density,” JHEP 1208 (2012) 164 [ArXiv:1205.6205] [hep-th]. [CrossRef] [Google Scholar]
  51. C. Lovelace, “Stability of String Vacua. 1. A New Picture of the Renormalization Group,” Nucl. Phys. B 273 (1986) 413. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.