Open Access
EPJ Web of Conferences
Volume 71, 2014
2nd International Conference on New Frontiers in Physics
Article Number 00068
Number of page(s) 29
Published online 29 April 2014
  1. E. Kiritsis, “D-branes in standard model building, gravity and cosmology,”, Fortsch. Phys. 52 (2004) 200 [CrossRef] [Google Scholar]
  2. [ Phys. Rept. 421 (2005) 105–190; [CrossRef] [Google Scholar]
  3. Erratum ibid 429 (2006) ,121–122] [ArXiv:hep-th/0310001]. [Google Scholar]
  4. E. Kiritsis, A gauge theory for gravity. Talk given at the Meeting "Cosmology Strings and Black Holes" Nordita, Copenhagen, 18-21 April 2006; [Google Scholar]
  5. Gravity from the landscape of gauge theories, talk at the Planck 2010 Meeting, CERN, 31 May-4 June 2010; [Google Scholar]
  6. "Gravity (and cosmology) from the landscape of QFT" Talk given at the focus week on string cosmology, Oct 4-8, 2010, IPMU, Tokyo; [Google Scholar]
  7. Strings, Quantum Fields and the UV landscape, talk given at the International Conference on New frontiers in Physics, Kolymbari, Crete, 28 August-5 September 2013. [Google Scholar]
  8. A. Kehagias and E. Kiritsis, “Mirage cosmology,” JHEP 9911 (1999) 022; [ArXiv:hep-th/9910174]. [CrossRef] [Google Scholar]
  9. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [Google Scholar]
  10. [Int. J. Theor. Phys. 38 (1999) 1113] [ArXiv:hep-th/9711200]. [CrossRef] [MathSciNet] [Google Scholar]
  11. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183 [ArXiv:hep-th/9905111]. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. ’t Hooft, “A Planar Diagram Theory For Strong Interactions,” Nucl. Phys. B 72 (1974) 461. [NASA ADS] [CrossRef] [Google Scholar]
  13. J. Polchinski, “The Cosmological Constant and the String Landscape,” [ArXiv:hep-th/0603249]. [Google Scholar]
  14. G. ’t Hooft, “Dimensional Reduction In Quantum Gravity,” [ArXiv:gr-qc/9310026]. [Google Scholar]
  15. R. Sundrum, “Towards an effective particle-string resolution of the cosmological constant problem,” JHEP 9907 (1999) 001; [ArXiv:hep-ph/9708329]. [CrossRef] [Google Scholar]
  16. R. Sundrum, “Fat gravitons, the cosmological constant and sub-millimeter tests,”Phys. Rev. D 69 (2004) 044014; [ArXiv:hep-th/0306106]. [CrossRef] [Google Scholar]
  17. A. Zee, “Dark energy and the nature of the graviton,” [ArXiv:hep-th/0309032]. [Google Scholar]
  18. C. Eling, R. Guedens and T. Jacobson, “Non-equilibrium Thermodynamics of Spacetime,” Phys. Rev. Lett. 96 (2006) 121301 [ArXiv:gr-qc/0602001]. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton,” [ArXiv:1001.0785][hep-th]. [Google Scholar]
  20. T. Faulkner, M. Guica, T. Hartman, R. C. Myers and M. Van Raamsdonk, “Gravitation from Entanglement in Holographic CFTs,” [ArXiv:1312.7856][hep-th]. [Google Scholar]
  21. H. B. Nielsen, Do we need fundamental laws of nature?, Gamma 36 and 37 (1979); [Google Scholar]
  22. D. L. Bennet, N. Brene, H. B. Nielsen, Random Dynamics, Physica Scripta, T15 (1987) 158. [Google Scholar]
  23. A. N. Schellekens, “Life at the Interface of Particle Physics and String Theory,” Rev. Mod. Phys. 85 (2013) 1491 [ArXiv:1306.5083][hep-ph]. [CrossRef] [Google Scholar]
  24. E. Kiritsis, “On novel string theories from 4d gauge theories,” [ArXiv:1301.6810][hep-th]. [Google Scholar]
  25. E. Kiritsis and V. Niarchos, “Interacting String Multi-verses and Holographic Instabilities of Massive Gravity,” Nucl. Phys. B 812 (2009) 488 [ArXiv:0808.3410][hep-th]; [CrossRef] [Google Scholar]
  26. E. Kiritsis and V. Niarchos, “(Multi)Matrix Models and Interacting Clones of Liouville Gravity,” JHEP 0808 (2008) 044 [ArXiv:0805.4234][hep-th]. [CrossRef] [Google Scholar]
  27. A. N. Schellekens, “Meromorphic C = 24 Conformal Field Theories,” Commun. Math. Phys. 153 (1993) 159 [ArXiv:hep-th/9205072]; [CrossRef] [Google Scholar]
  28. 70 relatives of the monster module,” [ArXiv:hep-th/9304098]. [Google Scholar]
  29. T. Banks and A. Zaks, “On The Phase Structure Of Vector-Like Gauge Theories With Massless Fermions,” Nucl. Phys. B 196 (1982) 189. [CrossRef] [Google Scholar]
  30. I. Antoniadis, E. Kiritsis and T. N. Tomaras, “A D-brane alternative to unification,” Phys. Lett. B 486 (2000) 186 [ArXiv:hep-ph/0004214]; [CrossRef] [Google Scholar]
  31. Fortsch. Phys. 49 (2001) 573 [ArXiv:hep-th/0111269]. [CrossRef] [Google Scholar]
  32. I. Antoniadis and S. Dimopoulos, “Splitting supersymmetry in string theory,” Nucl. Phys. B 715 (2005) 120 [ArXiv:hep-th/0411032]. [CrossRef] [Google Scholar]
  33. P. Anastasopoulos, T. P. T. Dijkstra, E. Kiritsis and A. N. Schellekens, “Orientifolds, hypercharge embeddings and the standard model,” Nucl. Phys. B 759 (2006) 83 [ArXiv:hep-th/0605226]. [CrossRef] [MathSciNet] [Google Scholar]
  34. I. Antoniadis, E. Kiritsis and J. Rizos, “Anomalous U(1)s in type-I superstring vacua,” Nucl. Phys. B 637 (2002) 92 [ArXiv:hep-th/0204153]. [CrossRef] [Google Scholar]
  35. P. Anastasopoulos, “4-D anomalous U(1)’s, their masses and their relation to 6-D anomalies,” JHEP 0308 (2003) 005 [ArXiv:hep-th/0306042]. [CrossRef] [Google Scholar]
  36. P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, “Anomalies, anomalous U(1)’s and generalized Chern-Simons terms,” JHEP 0611 (2006) 057 [ArXiv:hep-th/0605225]. [CrossRef] [Google Scholar]
  37. E. D’Hoker and E. Farhi, “Decoupling a Fermion in the Standard Electroweak Theory,” Nucl. Phys. B 248 (1984) 77. [CrossRef] [Google Scholar]
  38. E. Kiritsis, “D-branes in standard model building, gravity and cosmology,”, Section 8.6. Fortsch. Phys. 52 (2004) 200, [ArXiv:hep-th/0310001v1]. [CrossRef] [Google Scholar]
  39. C. Coriano, N. Irges and E. Kiritsis, “On the effective theory of low scale orientifold string vacua,” Nucl. Phys. B 746 (2006) 77 [ArXiv:hep-ph/0510332]. [CrossRef] [Google Scholar]
  40. E. Kiritsis, “Lorentz violation, Gravity, Dissipation and Holography,” JHEP 1301 (2013) 030 [ArXiv:1207.2325][hep-th]. [CrossRef] [Google Scholar]
  41. S. -S. Lee, “Quantum Renormalization Group and Holography,” JHEP 1401 (2014) 076 [ArXiv:1305.3908][hep-th]. [CrossRef] [Google Scholar]
  42. N. Arkani-Hamed, M. Porrati and L. Randall, “Holography and phenomenology,” JHEP 0108 (2001) 017 [ArXiv:hep-th/0012148]. [CrossRef] [Google Scholar]
  43. E. Kiritsis, “Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals,” JHEP 0611 (2006) 049 [ArXiv:hep-th/0608088]; [CrossRef] [Google Scholar]
  44. O. Aharony, A. B. Clark and A. Karch, “The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture,” Phys. Rev. D 74 (2006) 086006 [ArXiv:hep-th/0608089]. [CrossRef] [MathSciNet] [Google Scholar]
  45. G. R. Dvali, G. Gabadadze and M. Porrati, “4-D gravity on a brane in 5-D Minkowski space,” Phys. Lett. B 485 (2000) 208 [ArXiv:hep-th/0005016]. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  46. E. Kiritsis, N. Tetradis and T. N. Tomaras, “Induced gravity on RS branes,” JHEP 0203 (2002) 019 [ArXiv:hep-th/0202037]. [CrossRef] [Google Scholar]
  47. A. Karch and L. Randall, “Locally localized gravity,” JHEP 0105 (2001) 008 [ArXiv:hep-th/0011156]. [CrossRef] [Google Scholar]
  48. G. Dvali and S. N. Solodukhin, “Black Hole Entropy and Gravity Cutoff,” [ArXiv:0806.3976][hep-th]. [Google Scholar]
  49. F. L. Bezrukov and M. Shaposhnikov, “The Standard Model Higgs boson as the inflaton,” Phys. Lett. B 659 (2008) 703 [ArXiv:0710.3755][hep-th]. [NASA ADS] [CrossRef] [Google Scholar]
  50. U. Gürsoy and E. Kiritsis, “Exploring improved holographic theories for QCD: Part I,” JHEP 0802 (2008) 032 [ArXiv:0707.1324][hep-th]; [CrossRef] [Google Scholar]
  51. U. Gürsoy, E. Kiritsis, F. Nitti, “Exploring improved holographic theories for QCD: Part II,” JHEP 0802, 019 (2008) [ArXiv:0707.1349][hep-th]; [CrossRef] [Google Scholar]
  52. U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, “Improved Holographic QCD,” Lect. Notes Phys. 828 (2011) 79 [ArXiv:1006.5461][hep-th]. [CrossRef] [Google Scholar]
  53. J. Bourdier and E. Kiritsis, “Holographic RG flows and nearly-marginal operators,” Class. Quant. Grav. 31 (2014) 035011 [ArXiv:1310.0858][hep-th]. [CrossRef] [Google Scholar]
  54. E. Kiritsis, “Dissecting the string theory dual of QCD,” Fortsch. Phys. 57 (2009) 396 [ArXiv:0901.1772][hep-th]. [CrossRef] [Google Scholar]
  55. E. Witten, “Current Algebra Theorems For The U(1) Goldstone Boson," Nucl. Phys. B 156,(1979) 269. [CrossRef] [Google Scholar]
  56. U. Gürsoy, I. Iatrakis, E. Kiritsis, F. Nitti and A. O’Bannon, “The Chern-Simons Diffusion Rate in Improved Holographic QCD,” JHEP 1302 (2013) 119 [ArXiv:1212.3894][hep-th]. [CrossRef] [Google Scholar]
  57. E. Kiritsis, N. Tetradis and T. N. Tomaras, “Induced brane gravity: Realizations and limitations,” JHEP 0108 (2001) 012 [ArXiv:hep-th/0106050]. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.