Open Access
Issue
EPJ Web of Conferences
Volume 71, 2014
2nd International Conference on New Frontiers in Physics
Article Number 00132
Number of page(s) 13
DOI https://doi.org/10.1051/epjconf/20147100132
Published online 29 April 2014
  1. C. Tsallis and L.J.L. Cirto, Black hole thermodynamical entropy, Eur. Phys. J. C 73, 2487 (2013). [CrossRef] [EDP Sciences] [Google Scholar]
  2. G. Ruiz and C. Tsallis, Reply to Comment onTowards a large deviation theory for strongly correlated systems", Phys. Lett. A 377, 491 (2013). [CrossRef] [Google Scholar]
  3. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52, 479–487 (1988) [First appeared as preprint in 1987: CBPF-NF-062/87, ISSN 0029-3865, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro]. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Tempesta, Group entropies, correlation laws, and zeta functions, Phys. Rev. E 84, 021121 (2011). [CrossRef] [Google Scholar]
  5. C. Tsallis, Introduction to Nonextensive Statistical Mechanics - Approaching a Complex World (Springer, New York, 2009). [Google Scholar]
  6. M.R. Ubriaco, Entropies based on factional calculus, Phys. Lett. A 373, 2516 (2009). [CrossRef] [Google Scholar]
  7. E.P. Borges, I. Roditi, A family of non-extensive entropies, Phys. Lett. A 246, 399 (1998). [CrossRef] [Google Scholar]
  8. V. Schwammle, C. Tsallis, Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy, J. Math. Phys. 48, 113301 (2007). [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Hanel and S. Thurner, A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions, Europhys. Lett. 93, 20006 (2011). [CrossRef] [Google Scholar]
  10. R. Hanel and S. Thurner, When do generalised entropies apply? How phase space volume determines entropy, EPL 96, 50003 (2011). [Google Scholar]
  11. R. Hanel and S. Thurner, Generalized (c, d)-entropy and aging random walks, Entropy 15, 5324 (2013). [CrossRef] [Google Scholar]
  12. C. Tsallis, R.S. Mendes and A.R. Plastino, The role of constraints within generalized nonextensive statistics, Physica A 261, 534–554 (1998). [CrossRef] [Google Scholar]
  13. M.S. Ribeiro, C. Tsallis and F.D. Nobre, Probability distributions extremizing the nonadditive entropy Sδ and stationary states of the corresponding nonlinear Fokker-Planck equation, Phys. Rev. E 88, 052107 (2013). [CrossRef] [Google Scholar]
  14. A regularly updated bibliography is available in http://tsallis.cat.cbpf.br/biblio.htm [Google Scholar]
  15. S. Umarov, C. Tsallis and S. Steinberg, On a q-central limit theorem consistent with nonextensive statistical mechanics, Milan J. Math. 76, 307 (2008). [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Umarov, C. Tsallis, M. Gell-Mann and S. Steinberg, Generalization of symmetric α-stable Lévy distributions for q > 1, J. Math. Phys. 51, 033502 (2010). [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Douglas, S. Bergamini and F. Renzoni, Tunable Tsallis distributions in dissipative optical lattices, Phys. Rev. Lett. 96, 110601 (2006). [CrossRef] [PubMed] [Google Scholar]
  18. R.G. DeVoe, Power-law distributions for a trapped ion interacting with a classical buffer gas, Phys. Rev. Lett. 102, 063001 (2009). [CrossRef] [PubMed] [Google Scholar]
  19. A.S. Betzler and E.P. Borges, Nonextensive distributions of asteroid rotation periods and diameters, Astronomy and Astrophysics 539, A158 (2012). [Google Scholar]
  20. A. Upadhyaya, J.-P. Rieu, J.A. Glazier and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A 293, 549 (2001). [CrossRef] [Google Scholar]
  21. F. Baldovin and A. Robledo, Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics, Phys. Rev. E 66, R045104 (2002). [CrossRef] [Google Scholar]
  22. F. Baldovin and A. Robledo, Nonextensive Pesin identity. Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map, Phys. Rev. E 69, 045202(R) (2004). [CrossRef] [MathSciNet] [Google Scholar]
  23. B. Luque, L. Lacasa and A. Robledo, Feigenbaum graphs at the onset of chaos, Phys. Lett. A 376, 3625 (2012). [CrossRef] [Google Scholar]
  24. M.L. Lyra and C. Tsallis, Nonextensivity and multifractality in low-dimensional dissipative systems, Phys. Rev. Lett. 80, 53 (1998). [CrossRef] [Google Scholar]
  25. M.L. Lyra and U. Tirnakli, Damage spreading in the Bak-Sneppen and ballistic deposition models: Critical dynamics and nonextensivity, in Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, [Google Scholar]
  26. eds. H.L. Swinney and C. Tsallis, Physica D 193, 329 (2004). [CrossRef] [Google Scholar]
  27. U. Tirnakli and M.L. Lyra, Critical dynamics of anisotropic Bak-Sneppenmodel, Physica A 342, 151 (2004). [CrossRef] [Google Scholar]
  28. U. Tirnakli, C. Tsallis and M.L. Lyra, Circular-like maps: Sensitivity to the initial conditions, multifractality and nonextensivity, Eur. Phys. J. B 11, 309 (1999). [CrossRef] [EDP Sciences] [Google Scholar]
  29. E.P. Borges, C. Tsallis, G.F.J. Ananos and P.M.C. Oliveira, Nonequilibrium probabilistic dynamics at the logistic map edge of chaos, Phys. Rev. Lett. 89, 254103 (2002). [CrossRef] [PubMed] [Google Scholar]
  30. G.F.J. Ananos and C. Tsallis, Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps, Phys. Rev. Lett. 93, 020601 (2004). [CrossRef] [PubMed] [Google Scholar]
  31. U. Tirnakli, C. Beck and C. Tsallis, Central limit behavior of deterministic dynamical systems, Phys. Rev. E 75, 040106(R) (2007). [CrossRef] [Google Scholar]
  32. U. Tirnakli, C. Tsallis and C. Beck, A closer look at time averages of the logistic map at the edge of chaos, Phys. Rev. E 79, 056209 (2009). [CrossRef] [MathSciNet] [Google Scholar]
  33. U. Tirnakli, H.J. Jensen and C. Tsallis, Restricted random walk model as a new testing ground for the applicability of q-statistics, Europhys. Lett. 96, 40008 (2011). [CrossRef] [Google Scholar]
  34. K.E. Daniels, C. Beck and E. Bodenschatz, Defect turbulence and generalized statistical mechanics, in Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, eds. H.L. Swinney and C. Tsallis, Physica D 193, 208 (2004). [CrossRef] [MathSciNet] [Google Scholar]
  35. L.F. Burlaga, A.F. Vinas, N.F. Ness and M.H. Acuna, Tsallis statistics of the magnetic field in the heliosheath, Astrophys. J. 644, L83 (2006). [CrossRef] [Google Scholar]
  36. B. Liu and J. Goree, Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma, Phys. Rev. Lett. 100, 055003 (2008). [CrossRef] [PubMed] [Google Scholar]
  37. R. Amour and M. Tribeche, Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution, Phys. Plasmas 17, 063702 (2010). [CrossRef] [Google Scholar]
  38. R.M. Pickup, R. Cywinski, C. Pappas, B. Farago and P. Fouquet, Generalized spin glass relaxation, Phys. Rev. Lett. 102, 097202 (2009). [CrossRef] [PubMed] [Google Scholar]
  39. J. S. Andrade Jr., G.F.T. da Silva, A.A. Moreira, F.D. Nobre and E.M.F. Curado, Thermostatistics of overdamped motion of interacting particles, Phys. Rev. Lett. 105, 260601 (2010). [CrossRef] [PubMed] [Google Scholar]
  40. O. Sotolongo-Grau, D. Rodriguez-Perez, J.C. Antoranz and O. Sotolongo-Costa, Tissue radiation response with maximum Tsallis entropy, Phys. Rev. Lett. 105, 158105 (2010). [CrossRef] [PubMed] [Google Scholar]
  41. F.D. Nobre, M.A. Rego-Monteiro and C. Tsallis, Nonlinear generalizations of relativistic and quantum equations with a common type of solution, Phys. Rev. Lett. 106, 140601 (2011). [CrossRef] [PubMed] [Google Scholar]
  42. G. Ruiz and C. Tsallis, Reply to Comment on “Towards a large deviation theory for strongly correlated systems", Phys. Lett. A 377, 491 (2013). [CrossRef] [Google Scholar]
  43. C. Anteneodo and C. Tsallis, Breakdown of the exponential sensitivity to the initial conditions: Role of the range of the interaction, Phys. Rev. Lett. 80, 5313 (1998). [CrossRef] [Google Scholar]
  44. A. Pluchino and A. Rapisarda, Nonergodicity and central limit behavior for systems with longrange interactions, SPIE 2, 6802–32 (2007). [Google Scholar]
  45. A. Pluchino, A. Rapisarda and C. Tsallis, Nonergodicity and central limit behavior in long-range Hamiltonians, Europhys. Lett. 80, 26002 (2007). [CrossRef] [MathSciNet] [Google Scholar]
  46. A. Pluchino, A. Rapisarda and C. Tsallis, A closer look at the indications of q-generalized Central Limit Theorem behavior in quasi-stationary states of the HMF model, Physica A 387, 3121 (2008). [CrossRef] [Google Scholar]
  47. L.J.L. Cirto, V.R.V. Assis and C. Tsallis, Influence of the interaction range on the thermostatistics of a classical many-body system, Physica A 393, 286 (2014). [CrossRef] [Google Scholar]
  48. J. Mohanalin, Beenamol, P.K. Kalra and N. Kumar, A novel automatic microcalcification detection technique using Tsallis entropy and a type II fuzzy index, Computers and Mathematics with Applications 60 (8), 2426 (2010). [CrossRef] [Google Scholar]
  49. G.L. Ferri, M.F. Reynoso Savio and A. Plastino, Tsallis’ q-triplet and the ozone layer, Physica A 389, 1829 (2010). [CrossRef] [Google Scholar]
  50. D.J.B. Soares, C. Tsallis, A.M. Mariz and L.R. da Silva, Preferential attachment growth model and nonextensive statistical mechanics, Europhys. Lett. 70, 70 (2005). [CrossRef] [MathSciNet] [Google Scholar]
  51. S. Thurner and C. Tsallis, Nonextensive aspects of self-organized scale-free gas-like networks, Europhys. Lett. 72, 197 (2005). [CrossRef] [Google Scholar]
  52. M.D.S. de Meneses, S.D. da Cunha, D.J.B. Soares and L.R. da Silva, Preferential attachment scale-free growth model with random fitness and connection with Tsallis statistics, in Complexity and Nonextensivity: New Trends in Statistical Mechanics, eds. M. Sakagami, N. Suzuki and S. Abe, Prog. Theor. Phys. Suppl. 162, 131–137 (2006). [CrossRef] [Google Scholar]
  53. I. Bediaga, E.M.F. Curado and J. Miranda, A nonextensive thermodynamical equilibrium approach in e+e → hadrons, Physica A 286, 156 (2000). [CrossRef] [Google Scholar]
  54. C. Beck, Non-extensive statistical mechanics and particle spectra in elementary interactions, Physica A 286, 164 (2000). [CrossRef] [Google Scholar]
  55. C. Tsallis, J.C. Anjos and E.P. Borges, Fluxes of cosmic rays: A delicately balanced stationary state, Phys. Lett. A 310, 372 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  56. C. Beck, Generalized statistical mechanics of cosmic rays, Physica A 331, 173 (2003). [CrossRef] [Google Scholar]
  57. D.D. Chinellato, J. Takahashi and I. Bediaga, A non-extensive equilibrium analysis of π+ pT spectra at RHIC, J. Phys. G: Nucl. Part. Phys. 37, 094042 (2010). [CrossRef] [Google Scholar]
  58. V. Khachatryan et al (CMS Collaboration), Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 7 TeV, Phys. Rev. Lett. 105, 022002 (2010). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  59. ATLAS Collaboration, Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC, New J. Physics 13, 053033 (2011). [Google Scholar]
  60. A. Adare et al (PHENIX Collaboration), Measurement of neutral mesons in p + p collisions at √s = 200 GeV and scaling properties of hadron production, Phys. Rev. D 83, 052004 (2011). [CrossRef] [Google Scholar]
  61. L. Milano, Measurement of identified charged hadron spectra with the ALICE experiment at the LHC, J. Phys.: Conference Series 316, 012019 (2011). [Google Scholar]
  62. A. Deppman, Self-consistency in non-extensive thermodynamics of highly excited hadronic states, Physica A 391, 6380 (2012). [CrossRef] [Google Scholar]
  63. L. Marques, E. Andrade-II and A. Deppman, Nonextensivity of hadronic systems, Phys. Rev. D 87, 114022 (2013). [CrossRef] [Google Scholar]
  64. J. Cleymans, The Tsallis distribution for p-p collisions at the LHC, J. Physics: Conference Series 455, 012049 (2013). [Google Scholar]
  65. M. Venaruzzo, Resonance results in 7 TeV pp collisions with the ALICE detector at the LHC, Nuclear Phys. B (Proc. Suppl.) 234, 317 (2013). [CrossRef] [Google Scholar]
  66. Abelev et al (ALICE Collaboration), K0S and Λ production in Pb−Pb collisions at √sNN = 2.76 TeV, Phys. Rev. Lett. 111, 222301 (2013). [CrossRef] [PubMed] [Google Scholar]
  67. C.Y. Wong and G. Wilk, Tsallis fits to pT spectra and relativistic hard scattering in pp collisions at LHC, Phys. Rev. D 87, 114007 (2013). [CrossRef] [Google Scholar]
  68. N. Komatsu and S. Kimura, Entropic cosmology for a generalized black-hole entropy, Phys. Rev. D 88, 083534 (2013). [CrossRef] [Google Scholar]
  69. J. P. Nolan, Numerical Calculation of Stable Densities and Distribution Functions, Communications in Statistics-Stochastic Models 13(4), 759 (1997). [CrossRef] [Google Scholar]
  70. J. P. Nolan, Stable Distributions - Models for Heavy Tailed Data, Birkhauser, Boston (2013). In progress, Chapter 1 online at academic2.american.edu/∽jpnolan . [Google Scholar]
  71. R. Osorio, L. Borland and C. Tsallis, Distributions of high-frequency stock-market observables, in Nonextensive Entropy - Interdisciplinary Applications, eds. M. Gell-Mann and C. Tsallis (Oxford University Press, New York, 2004). [Google Scholar]
  72. C. Tsallis, C. Anteneodo, L. Borland and R. Osorio, Nonextensive statistical mechanics and economics, Physica A 324, 89 (2003). [CrossRef] [MathSciNet] [Google Scholar]
  73. F. Caruso and C. Tsallis, Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics, Phys. Rev. E 78, 021102 (2008). [CrossRef] [MathSciNet] [Google Scholar]
  74. D.B. Walton and J. Rafelski, Equilibrium distribution of heavy quarks in Fokker-Planck dynamics, Phys. Rev. Lett. 84, 31 (2000). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.