Open Access
Issue
EPJ Web of Conferences
Volume 77, 2014
16th International Congress of Metrology
Article Number 00022
Number of page(s) 7
DOI https://doi.org/10.1051/epjconf/20147700022
Published online 19 August 2014
  1. G.D. Flux, M. Bardiès, C. Chiesa et al, “Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray””, Eur J Nucl Med Mol Imaging 34,1 (2007). [Google Scholar]
  2. G.D. Flux, H. Masud, S.J. Chittenden et al, “A doseeffect correlation for radioiodine ablation in differentiated thyroid cancer”, Eur J Nucl Med Mol Imaging 37:270–275 (2010). [CrossRef] [PubMed] [Google Scholar]
  3. L. Mo, B. Avci B, D. James, et al., “Development of activity standard for 90Y microspheres” . Appl. Radiat. Isot. 63, 193–199 (2005). [CrossRef] [PubMed] [Google Scholar]
  4. R. Broda, P. Cassette, K. Kossert, “Radionuclide metrology using liquid scintillation counting”. Metrologia 44, S36–S52 (2007). [CrossRef] [Google Scholar]
  5. Capogni, M., De Felice, P., Fazio, A., Latini, F., Abbas, K., 2008. “Development of a primary standard for calibration of 64Cu activity measurement systems”. Appl. Radiat. Isot. 66(6–7), 948–53 (2008). [CrossRef] [PubMed] [Google Scholar]
  6. K. Kossert, “Activity standardization by means of a new Čerenkov counting technique“. Appl. Radiat. Isot. 68, 1116–1120 (2010). [CrossRef] [PubMed] [Google Scholar]
  7. S. Agostinelli; et al., “Geant4 – a simulation toolkit”. Nucl. Instrum. Meth. A 506, 250–303 (2003). [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. C. Bobin, C. Thiam, J. Bouchard, F. Jaubert, “ Application of stochastic TDCR model based on Geant4 for Cherenkov primary measurements”, Appl. Radiat. Isot. 68, 2366–2371 (2010). [CrossRef] [PubMed] [Google Scholar]
  9. R. Lhommel, P. Goffette, M. Van den Eynde, et al “Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT”. Eur J Nucl Med Mol Imaging 36, 1696 (2009) [CrossRef] [PubMed] [Google Scholar]
  10. L. Van Elmbt, S. Vandenberghe, S. Walrand, et al “Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy”. Phys Med Biol 56:6759–6777 (2011) [CrossRef] [PubMed] [Google Scholar]
  11. S. Walrand, G.D. Flux, M.W. Konijnenberg, et al. “Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging?” Eur J Nucl Med Mol Imaging 38 (suppl): S57–S68 (2011) [CrossRef] [PubMed] [Google Scholar]
  12. M. D’Arienzo, P. Chiaramida, L. Chiacchiararelli, et al: “90Y-PET-based dosimetry after selective internal radiotherapy treatments”. Nucl Med Commun 33:633–640 (2012) [CrossRef] [PubMed] [Google Scholar]
  13. O. Bagni, M. D’Arienzo, P. Chiaramida, L. Chiacchiararelli, et al “90Y-PET for the assessment of microsphere biodistribution after selective internal radiotherapy” Nucl Med Commun. 33 (2):198–204 (2012). [CrossRef] [PubMed] [Google Scholar]
  14. K. Willowson, N. Forwood, B.W. Jakoby et al “Quantitative 90Y image reconstruction in PET” Med Phys, 39:7153–7159 (2012). [CrossRef] [PubMed] [Google Scholar]
  15. C. Fabbri, V. Mattone, M. Casi et al “Quantitative evaluation on [90Y] DOTATOC PET and SPECT imaging by phantom acquisitions and clinical applications in locoregional and systemic treatments” QJNM 56: 522–528 (2012) [Google Scholar]
  16. V.V.A.A, Mathematical Techniques in Nuclear Medicine, Institute of Physics and Engineering in Medicine, (2011). [Google Scholar]
  17. M. Pacilio M, N. Lanconelli, S. Lo Meo et al, “Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations” Med Phys 36,1543 (2009). [CrossRef] [PubMed] [Google Scholar]
  18. J.M. Franquiz, S. Chigurupati, K. Kandagatla, “Beta voxel S values for internal emitter dosimetry” Med Phys 30,1030 (2003). [CrossRef] [PubMed] [Google Scholar]
  19. J.M. Pereira, M.J. Stabin, F.R. Lima et al, “Image Quantification for Radiation Dose Calculations – Limitation and Uncertainties”, Health Phys 99:688–701 (2012). [CrossRef] [Google Scholar]
  20. K. Sjogreen, M. Ljungberg, S.E. Strand, “An Activity Quantification Method Based on Registration of CT and Whole Body Scintillation Camera Images, with Application to 131I”, J. Nucl. Med 43:972–982 (2002). [PubMed] [Google Scholar]
  21. Y.K. Dewaraja, S.J. Wilderman, M. Ljungberg et al, “Accurate dosimetry in I-131 radionuclide therapy using patient specific 3-dimensional methods for SPECT reconstruction and absorbed dose calculation”, J. Nucl. Med 46:840–849 (2005). [PubMed] [Google Scholar]
  22. M. D’Arienzo, F. Cicone, L. Chiacchiararelli, “Three-Dimensional Patient-Specific Dosimetry in Radioimmunotherapy with 90Y-Ibritumomab-Tiuxetan”, Cancer Biother Radiopharm 27:124–133 (2012). [CrossRef] [PubMed] [Google Scholar]
  23. M.G. Stabin, “Uncertainties in Internal Dose Calculations for Radiopharmaceutical”, J. Nucl. Med, 49:853–860 (2008a). [CrossRef] [PubMed] [Google Scholar]
  24. M.G. Stabin, R.B. Sparks, E. Crowe, “OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine”. , J Nucl. Med, 46:1023–1027 (2005). [PubMed] [Google Scholar]
  25. P. Kletting, S. Schimmel, H.A. Kestler, H. Hänscheid, M. Luster, “Molecular radiotherapy: The NUKFIT software for calculating the time-integrated activity coefficient”, Medical Physics (to appear). [Google Scholar]
  26. M.G. Cox, “Modelling clinical decay data using exponential functions”. In Approximation algorithms for complex systems, A.I.E.H. Georgoulis and J. Levesley, Eds., Springer-Verlag, 184–203 (2011). [Google Scholar]
  27. M.G. Cox, H.E. Joyce, J.C. Mason, “Approximation by sums of exponentials to decay functions using piecewise linear models”. In Approximation theory IX, Volume I: Theoretical Analysis. C.K. Chui and L.L. Schumaker, Eds., Vanderbilt University Press, 89–96 (1998). [Google Scholar]
  28. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, Evaluation of measurement data — Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM 100:2008 (2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. [Google Scholar]
  29. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” — Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology, JCGM 101:2008 (2008). http://www.bipm.org/utils/common/documents/jcgm/JCG M_101_2008_E.pdf. [Google Scholar]
  30. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, Evaluation of measurement data — Supplement 2 to the “Guide to the expression of uncertainty in measurement” — Extension to any number of output quantities. Joint Committee for Guides in Metrology, JCGM 102:2011 (2011). http://www.bipm.org/utils/common/documents/jcgm/JCGM_102_2011_E.pdf [Google Scholar]
  31. J. Wang, T. Li, “Iterative image reconstruction for CBCT using edge-preserving prior”, Med Phys. 36: 252–260 (2009). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.