Open Access
EPJ Web of Conferences
Volume 78, 2014
Wigner 111 – Colourful & Deep Scientific Symposium
Article Number 05001
Number of page(s) 6
Section Solid State Physics
Published online 25 September 2014
  1. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys., 4:144–148, 2008. [CrossRef]
  2. William F. Koehl, Bob B. Buckley, F. Joseph Heremans, Greg Calusine, and David D. Awschalom. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 479:84–87, 2011. [CrossRef] [PubMed]
  3. Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A, 57:120–126, Jan 1998. [CrossRef] [PubMed]
  4. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett., 92:076401, 2004. [CrossRef] [PubMed]
  5. M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, and M.D. Lukin. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 316:1312, 2007. [CrossRef] [PubMed]
  6. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup. Multipartite entanglement among single spins in diamond. Science, 320:1326, 2008. [CrossRef] [PubMed]
  7. Gopalakrishnan Balasubramanian, I. Y. Chan, Roman Kolesov, Mohannad Al-Hmoud, Julia Tisler, Chang Shin, Changdong Kim, Aleksander Wojcik, Philip R. Hemmer, Anke Krueger, Tobias Hanke, Alfred Leitenstorfer, Rudolf Bratschitsch, Fedor Jelezko, and Jörg Wrachtrup. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 455:648–651, 2008. [CrossRef] [PubMed]
  8. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455:644–647, 2008. [CrossRef] [PubMed]
  9. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuoschi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, and J. Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8:383, 2009. [CrossRef] [PubMed]
  10. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Gurudev Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, and M.D. Lukin. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455:644, 2008. [CrossRef] [PubMed]
  11. L.T. Hall, C.D. Hill, J.H. Cole, and L.C.L. Hollenberg. Ultrasensitive diamond magnetometry using optimal dynamic decoupling. Phys. Rev. B, 82:045208, 2010. [CrossRef]
  12. F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 7:459–463, 2011. [CrossRef]
  13. K.N. Shrivastava. Zero-field splittings in NiSiF6 · 6H2O as electron paramagnetic resonance thermometer. Chem. Phys. Lett., 20(1):106–107, 1973. [CrossRef]
  14. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin. Nanometer scale quantum thermometry in a living cell. Nature, 500:54–58, 2013. [CrossRef] [PubMed]
  15. David M. Toyli, Charles F. de las Casas, David J. Christle, Viatcheslav V. Dobrovitski, and David D. Awschalom. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA, 110:8417, 2013. [CrossRef]
  16. Philipp Neumann, Ingmar Jakobi, Florian Dolde, Christian Burk, Rolf Reuter, Gerald Waldherr, Jan Honert, Thomas Wolf, Andreas Brunner, Jeong Hyun Shim, Dieter Suter, H. Sumiya, Junichi Isoya, and Jörg Wrachtrup. High precision nanoscale temperature sensing using single defects in diamond. Nano Lett., 13:2738–2742, 2013. [CrossRef] [PubMed]
  17. V.M. Acosta, E. Bauch, M.P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett., 104:070801, 2010. [CrossRef] [PubMed]
  18. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber. Direct measurement of the quantum wavefunction. Nature, 474:188–191, 2011. [CrossRef] [PubMed]
  19. D. Evanko. The new fluorescent probes on the block. Nature Methods, 5:218–219, 2008. [CrossRef]
  20. J. Fan et al. 3C–SiC nanocrystals as fluorescent biological labels. Small, 4:1058–1062,2008. [CrossRef] [PubMed]
  21. D. Beke et al. Silicon carbide quantum dots for bioimaging. J. Mater. Res., 28:205–209, 2013. [CrossRef]
  22. A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien. A quantum delayed-choice experiment. Science, 338:634–637, 2012. [CrossRef] [PubMed]
  23. Igor I. Vlasov, Andrey A. Shiryaev, Torsten Rendler, Steffen Steinert, Sang-Yun Lee, Denis Antonov, Márton Vörös, Fedor Jelezko, Anatolii V. Fisenko, Lubov F. Semjonova, Johannes Biskupek, Ute Kaiser, Oleg I. Lebedev, Ilmo Sildos, Philip. R. Hemmer, Vitaly I. Konov, Adam Gali, and Jorg Wrachtrup. Molecular-sized fluorescent nanodiamonds. Nature Nanotechnology, 9:54–58, 2014. [CrossRef] [PubMed]
  24. V. N. Mochalin, O. Shenderova, D. Ho, and Gogotsi. The properties and applications of nanodiamonds. Nature Nanotech., 7:11–23, 2012. [CrossRef]
  25. J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon, and Öberg. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex. Phys. Rev. Lett., 77: 3041–3044, 1996. [CrossRef] [PubMed]
  26. Sachiko Amari, Roy S. Lewis, and Edward Anders. Interstellar grains in meteorites: I. isolation of sic, graphite and diamond; size distributions of sic and graphite. Geochimica et Cosmochimica Acta, 58: 459–470, 1994. [NASA ADS] [CrossRef]
  27. S. Yamada, B-S. Song, T. Asano, and S. Noda. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett., 99:201102, 2011. [CrossRef]
  28. R. Madar. Materials science: silicon carbide in contention. Nature, 430:974–975, 2004. [CrossRef] [PubMed]
  29. D. Nakamur et al. Ultrahigh-quality silicon carbide single crystals. Nature, 430:1009–1012, 2004. [CrossRef] [PubMed]
  30. X. Lu, J. Y. Lee, P. X-L. Feng, and Q. Lin. Silicon carbide microdisk resonator. Opt. Lett., 38:1304–1306, 2013. [CrossRef] [PubMed]
  31. D. DiVincenzo. Quantum bits: Better than excellent. Nature Mater., 9:468–469, 2010. [CrossRef]
  32. S. Castelletto1, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima. A silicon carbide room-temperature single-photon source. Nature Materials, 13: 151–156, 2014. [CrossRef] [PubMed]
  33. A. Gali. Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory. J. Mater. Res., 27:897–909, 2012. [CrossRef]
  34. J. R.Weber et al. Quantum computing with defects. Proc. Nat’l Acad. Sci. USA, 107:8513–8518, 2010. [CrossRef]
  35. William F. Koehl, Bob B. Buckley, F. Joseph Heremans, Greg Calusine, and David D. Awschalom. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 479:84–87, 2011. [CrossRef] [PubMed]
  36. P. G. Baranov et al. Silicon vacancy in sic as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B, 83:125203, 2011. [CrossRef]
  37. A. L. Falk et al. Polytype control of spin qubits in silicon carbide. Nature Commun., 4:1819, 2013. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.