Open Access
EPJ Web of Conferences
Volume 78, 2014
Wigner 111 – Colourful & Deep Scientific Symposium
Article Number 05001
Number of page(s) 6
Section Solid State Physics
Published online 25 September 2014
  1. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys., 4:144–148, 2008. [CrossRef] [Google Scholar]
  2. William F. Koehl, Bob B. Buckley, F. Joseph Heremans, Greg Calusine, and David D. Awschalom. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 479:84–87, 2011. [CrossRef] [PubMed] [Google Scholar]
  3. Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A, 57:120–126, Jan 1998. [CrossRef] [PubMed] [Google Scholar]
  4. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett., 92:076401, 2004. [CrossRef] [PubMed] [Google Scholar]
  5. M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, and M.D. Lukin. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 316:1312, 2007. [CrossRef] [PubMed] [Google Scholar]
  6. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup. Multipartite entanglement among single spins in diamond. Science, 320:1326, 2008. [CrossRef] [PubMed] [Google Scholar]
  7. Gopalakrishnan Balasubramanian, I. Y. Chan, Roman Kolesov, Mohannad Al-Hmoud, Julia Tisler, Chang Shin, Changdong Kim, Aleksander Wojcik, Philip R. Hemmer, Anke Krueger, Tobias Hanke, Alfred Leitenstorfer, Rudolf Bratschitsch, Fedor Jelezko, and Jörg Wrachtrup. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 455:648–651, 2008. [CrossRef] [PubMed] [Google Scholar]
  8. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455:644–647, 2008. [CrossRef] [PubMed] [Google Scholar]
  9. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuoschi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, and J. Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8:383, 2009. [CrossRef] [PubMed] [Google Scholar]
  10. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Gurudev Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, and M.D. Lukin. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455:644, 2008. [CrossRef] [PubMed] [Google Scholar]
  11. L.T. Hall, C.D. Hill, J.H. Cole, and L.C.L. Hollenberg. Ultrasensitive diamond magnetometry using optimal dynamic decoupling. Phys. Rev. B, 82:045208, 2010. [CrossRef] [Google Scholar]
  12. F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 7:459–463, 2011. [CrossRef] [Google Scholar]
  13. K.N. Shrivastava. Zero-field splittings in NiSiF6 · 6H2O as electron paramagnetic resonance thermometer. Chem. Phys. Lett., 20(1):106–107, 1973. [CrossRef] [Google Scholar]
  14. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin. Nanometer scale quantum thermometry in a living cell. Nature, 500:54–58, 2013. [CrossRef] [PubMed] [Google Scholar]
  15. David M. Toyli, Charles F. de las Casas, David J. Christle, Viatcheslav V. Dobrovitski, and David D. Awschalom. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA, 110:8417, 2013. [CrossRef] [Google Scholar]
  16. Philipp Neumann, Ingmar Jakobi, Florian Dolde, Christian Burk, Rolf Reuter, Gerald Waldherr, Jan Honert, Thomas Wolf, Andreas Brunner, Jeong Hyun Shim, Dieter Suter, H. Sumiya, Junichi Isoya, and Jörg Wrachtrup. High precision nanoscale temperature sensing using single defects in diamond. Nano Lett., 13:2738–2742, 2013. [CrossRef] [PubMed] [Google Scholar]
  17. V.M. Acosta, E. Bauch, M.P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett., 104:070801, 2010. [CrossRef] [PubMed] [Google Scholar]
  18. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber. Direct measurement of the quantum wavefunction. Nature, 474:188–191, 2011. [CrossRef] [PubMed] [Google Scholar]
  19. D. Evanko. The new fluorescent probes on the block. Nature Methods, 5:218–219, 2008. [CrossRef] [Google Scholar]
  20. J. Fan et al. 3C–SiC nanocrystals as fluorescent biological labels. Small, 4:1058–1062,2008. [CrossRef] [PubMed] [Google Scholar]
  21. D. Beke et al. Silicon carbide quantum dots for bioimaging. J. Mater. Res., 28:205–209, 2013. [CrossRef] [Google Scholar]
  22. A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien. A quantum delayed-choice experiment. Science, 338:634–637, 2012. [CrossRef] [PubMed] [Google Scholar]
  23. Igor I. Vlasov, Andrey A. Shiryaev, Torsten Rendler, Steffen Steinert, Sang-Yun Lee, Denis Antonov, Márton Vörös, Fedor Jelezko, Anatolii V. Fisenko, Lubov F. Semjonova, Johannes Biskupek, Ute Kaiser, Oleg I. Lebedev, Ilmo Sildos, Philip. R. Hemmer, Vitaly I. Konov, Adam Gali, and Jorg Wrachtrup. Molecular-sized fluorescent nanodiamonds. Nature Nanotechnology, 9:54–58, 2014. [CrossRef] [PubMed] [Google Scholar]
  24. V. N. Mochalin, O. Shenderova, D. Ho, and Gogotsi. The properties and applications of nanodiamonds. Nature Nanotech., 7:11–23, 2012. [CrossRef] [Google Scholar]
  25. J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon, and Öberg. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex. Phys. Rev. Lett., 77: 3041–3044, 1996. [CrossRef] [PubMed] [Google Scholar]
  26. Sachiko Amari, Roy S. Lewis, and Edward Anders. Interstellar grains in meteorites: I. isolation of sic, graphite and diamond; size distributions of sic and graphite. Geochimica et Cosmochimica Acta, 58: 459–470, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  27. S. Yamada, B-S. Song, T. Asano, and S. Noda. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett., 99:201102, 2011. [CrossRef] [Google Scholar]
  28. R. Madar. Materials science: silicon carbide in contention. Nature, 430:974–975, 2004. [CrossRef] [PubMed] [Google Scholar]
  29. D. Nakamur et al. Ultrahigh-quality silicon carbide single crystals. Nature, 430:1009–1012, 2004. [CrossRef] [PubMed] [Google Scholar]
  30. X. Lu, J. Y. Lee, P. X-L. Feng, and Q. Lin. Silicon carbide microdisk resonator. Opt. Lett., 38:1304–1306, 2013. [CrossRef] [PubMed] [Google Scholar]
  31. D. DiVincenzo. Quantum bits: Better than excellent. Nature Mater., 9:468–469, 2010. [CrossRef] [Google Scholar]
  32. S. Castelletto1, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima. A silicon carbide room-temperature single-photon source. Nature Materials, 13: 151–156, 2014. [CrossRef] [PubMed] [Google Scholar]
  33. A. Gali. Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory. J. Mater. Res., 27:897–909, 2012. [CrossRef] [Google Scholar]
  34. J. R.Weber et al. Quantum computing with defects. Proc. Nat’l Acad. Sci. USA, 107:8513–8518, 2010. [CrossRef] [Google Scholar]
  35. William F. Koehl, Bob B. Buckley, F. Joseph Heremans, Greg Calusine, and David D. Awschalom. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 479:84–87, 2011. [CrossRef] [PubMed] [Google Scholar]
  36. P. G. Baranov et al. Silicon vacancy in sic as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B, 83:125203, 2011. [CrossRef] [Google Scholar]
  37. A. L. Falk et al. Polytype control of spin qubits in silicon carbide. Nature Commun., 4:1819, 2013. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.