Open Access
Issue
EPJ Web of Conferences
Volume 87, 2015
EC18 - 18th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating
Article Number 04005
Number of page(s) 5
Section Technology
DOI https://doi.org/10.1051/epjconf/20158704005
Published online 12 March 2015
  1. V. Erckmann et al., Electron cyclotron heating for W7-X: Physics and Technology. Fusion Science and Technology 52, No2 (2007) 291–312. [Google Scholar]
  2. N. Marushchenko et al., this conference. [Google Scholar]
  3. W.H.F. Talbot, Facts relating to optical sciences. No. IV. Philos. Mag. 9 (Third series), 401 (1836). [Google Scholar]
  4. R. Prater, et al., 1997, “The ECH launcher for ITER”, Proc. of the 10th workshop on ECE and ECRH, EC-10, ed. T. Donne and T. Verhoeven, World Scientific, Singapore, 531–540 (1997). [Google Scholar]
  5. A.V. Chirkov, et al., Simulation and experimental study of a remote steering system for ECRH/ECCD antenna beams. Fusion Eng. Design 53 (2001) 465–474, 2001. [CrossRef] [Google Scholar]
  6. K. Takahashi, C. Moeller, et al., High power experiments of remote steering launcher for electron cyclotron heating and current drive, Fusion Eng. Des. 65 (2003) 589–598. [CrossRef] [Google Scholar]
  7. B. Plaum, et al., High-power tests of a remote-steering antenna at 140 GHz. Fusion Science and Technology, 50 1–14, 2006. [Google Scholar]
  8. H. Idei, et al., Electron cyclotron current drive experiments in LHCD plasmas using a remote steering antenna on the TRIAM-1M tokamak, Nucl. Fusion 46 (2006) 489–499. [CrossRef] [Google Scholar]
  9. K. Ohkubo et al., “Extension of steering angle in asquare corrugated waveguide antenna”. Fusion Eng. 65 (2003), 657–672. [CrossRef] [Google Scholar]
  10. B. Plaum et al., “Numerical calculation of reflection characteristics of grooved surfaces”. J. Infrared Milli. Terahz. Waves 32 (2011), 482–495. [CrossRef] [Google Scholar]
  11. G.G. Denisov, S.V. Kuzikov, and N. Kobayashi, RF analysis of ITER remote steering antenna for electron-cyclotron plasma heating Int. J. Infrared Millim. Waves 22 (2001) 1735–60. [CrossRef] [Google Scholar]
  12. W. Kasparek, A. Fernandez, F. Hollmann, and R. Wacker: Measurement of ohmic loss of metallic reflectors at 140 GHz by a 3-mirror resonator technique. Int. J. Infrared and Millim. Waves 22 (2001) 1695–1707. [CrossRef] [Google Scholar]
  13. W. Kasparek, et al., 3-Mirror Resonator Reflectivity Measurement of Plane and Grooved Surfaces: Setup, Options, Results. Proc. of 6th European Conf. on Antennas and Propagation (EU-CAP), Prague, 2012. talk CM01.6, paper 1569533861. [Google Scholar]
  14. W.A. Bongers, et al., A remotely steered millimetre wave launcher for electron cyclotron heating and current drive on ITER. Fusion Eng. Design 85 (2010), pp. 69–86. [CrossRef] [Google Scholar]
  15. W. Kasparek et al., “Performance of a remote steering antenna for ECRH/ECCD applications in ITER using four-wall corrugated square waveguide”. Nucl. Fusion 43 (2003), 505 – 1512. [CrossRef] [Google Scholar]
  16. G.G. Denisov et al: “Efficiency enhancement of components based on Talbot effect”. J. Infrared Milli. Waves 28 (2007), 923–935. [CrossRef] [Google Scholar]
  17. C. Lechte et al., Remote-Steering Launchers for the ECRH system on the Stellarator W7-X. Proc. of 38th. Int. Conf. on Infrared, Millimeter and Terahertz waves, IRMMW-THz 2013, Mainz, September 2013, paper A2337676. [Google Scholar]
  18. V. Erckmann, et al., Large Scale CW ECRH Systems: Meeting a Challenge. 19th Topical Conference of RF Power in Plasmas, Vol. 1406 of AIP Conference Proceedings, page 165, Newport, RI, USA, 2011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.