Open Access
Issue |
EPJ Web of Conferences
Volume 92, 2015
EFM14 – Experimental Fluid Mechanics 2014
|
|
---|---|---|
Article Number | 02117 | |
Number of page(s) | 4 | |
Section | Contributions | |
DOI | https://doi.org/10.1051/epjconf/20159202117 | |
Published online | 06 May 2015 |
- ISO 3846 (2008) [Google Scholar]
- M. G. Bos, Discharge measurement structures. (ILRI, Wageningen, 1989) [Google Scholar]
- W. H. Hager, Discharge measurement structures. (EPFL, Lausanne, 1986) [Google Scholar]
- S. Muller, P. Guiraud, A. Line, J. Hydraul. Res., 49, 2 (2011) [CrossRef] [Google Scholar]
- Z. Zachoval, I. Mistrová, L. Roušar, J. Šulc, P. Zubík, J. Hydrol. Hydromech., 60, 4, 288-298 (2012) [Google Scholar]
- Z. Zachoval, M. Knéblová, L. Roušar, J. Rumann, J. Šulc, J. Hydrol. Hydromech., 62, 2, 145-149 (2014) [Google Scholar]
- Z. Zachoval, P. Zubík, I. Mistrová, L. Roušar, Experimentální výzkum a numerické modelování úplavu za návodní hranou přelivu se širokou korunou obdélníkového průřezu. (BUT, Brno, 2012) [Google Scholar]
- N. Rajaratnam, D. Muralidhar, J. Hydraul. Res., 9, 2 (1971) [Google Scholar]
- O. Baud, W. H. Hager, J. Envi. Eng., 126, 2 (2000) [Google Scholar]
- C. A. Gonzalez, H. Chanson, Flow Meas. Inst., 18 (2007) [Google Scholar]
- M. S. Kirkgoz, M. S. Akoz, A. A., Oner, Canadian J. Civil Eng., 35, 9, 975–986 (2008) [Google Scholar]
- Z. Zachoval, L. Roušar, Transport dnových splavenin přes přeliv pravoúhlého průřezu se širokou korunou. (BUT, Brno, 2014) [Google Scholar]
- Moss, W. D., J. Fluid Mech., 52, 2, 307-320 (1972) [Google Scholar]
- P. M. Sreetharan, Analytical and experimental investigation of flow measurement by long-based weirs in the rectilinear and curvilinear ranges. (The Hatfield Polytechnic, Hatfield 1983) [Google Scholar]
- F. Dias, J. B. Keller, J.-M. Vanden-Broeck, Phys. Fluids, 31, 8, 2071-2076 (1988) [CrossRef] [Google Scholar]
- F. A. Bombardeli, M. H. García, M. E. Caisley. HydroInformatics 4th (2000) [Google Scholar]
- V. Yakhot, S. A. Orszag, Phys. Review Letters, 57, 14 (1986) [Google Scholar]
- W. H. Hager, M., J. Schwalt, Irrig. Drainage Eng. 120, 1, 13-26 (1994) [Google Scholar]
- M. A. Sarker, D. G. Rhodes, Flow Meas. Instrument., 15, 4, 215-219, (2004) [Google Scholar]
- B. E. Launder, D. B. Spalding, Computer Methods Appl. Mech. Eng., 3, 2, 269–289 (1974) [Google Scholar]
- C. W. Hirt, B. D. Nichols, J. Comp. Phys. 39 (1981) [Google Scholar]
- D. M. Hargreaves, H. P. Morvan, N. G. Wright, Eng. Appl. Comp. Fluid Mech., 1, 2, 136-146. (2007) [Google Scholar]
- B. E. Launder, G. J. Reece, W. Rodi, J. Fluid Mech., 68, 3, (1975) [Google Scholar]
- T. Hsu, E. C. Ozdemir, Study of complex flows through SFWMD culvert structures by CFD modeling. University of Florida (2007) [Google Scholar]
- D. C. Wilcox, AIAA J., 26, 11, 1299–1310 (1988) [Google Scholar]
- R. J. Adrian, Annual Rev. Fluid Mech., 23, 261–304 (1991) [Google Scholar]
- A. O. Adegbulugbe, A computational fluid dynamic validation study for the prediction and analysis of free surface flow over a broad crested weir. (The University of Leeds, Leeds, 2010) [Google Scholar]
- F. R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications (NASA, 1992) [Google Scholar]
- Z. Zachoval, J. Pařílková, L. Roušar, 26th Symposium on Anemometry, Inst. Hydromech. ASCR, Litice, 113-119 (2012) [Google Scholar]
- C. G. Speziale, S. Sarkar, T. B. Gatski, Modeling the presure-strain correlation of turbulence – an invariant dynamical systems approach (NASA, 1990) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.