Open Access
Issue
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 04017
Number of page(s) 6
Section Modeling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/20159404017
Published online 07 September 2015
  1. Inoue A., Kawamura Y., Shibata T., et al. Viscous flow deformation in supercooled liquid state of bulk amorphous Zr55Al10Ni5Cu30 alloy. Materials Transactions JIM, 1996, 39 (6): 1337–1341 [CrossRef] [Google Scholar]
  2. Nieh, T.G., Wadsworth, J., Liu, C.T., et al. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Materialia, 2001, 49; 15: 2887–2896 [CrossRef] [Google Scholar]
  3. Lu, J., Ravichandran, G., Johnson, W.L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Materialia, 2003, 51: 3429–3443 [CrossRef] [Google Scholar]
  4. Zhang, Z.F., Eckert, J., Schultz, L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Materialia, 2003, 51:1167–1179 [CrossRef] [Google Scholar]
  5. Dai, L.H., Bai, Y.L. Basic mechanical behaviors and mechanics of shear banding in BMGs. International Journal of Impact Engineering, 2008, 35: 704–716 [CrossRef] [Google Scholar]
  6. Nishiyama, N., Inoue, A. Glass transition behavior and viscous flow working of Pd40Cu30Ni10P20 amoephous alloy. Materials Transactions JIM, 1999; 40 (1): 64–70 [CrossRef] [Google Scholar]
  7. Conner, R.D., Dandliker, R.B., Scruggs, V., et al. Dynamic deformation behavior of tungsten-fiber / metallic–glass matrix composites. International Journal of Impact Engineering. 2000; 24: 435–444 [CrossRef] [Google Scholar]
  8. Choi-Yim, H., Conner, R.D., Szuecs, F., et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix. Scripta Materialia, 2001; 45: 1039–1045 [CrossRef] [Google Scholar]
  9. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25 (9): 407–415 [CrossRef] [Google Scholar]
  10. Huang, R., Suo, Z., Prevost, J.H. Inhomogeneous deformation in metallic glasses. Journal of the Mechanics and Physics of Solids, 2002, 50: 1011–1027 [CrossRef] [Google Scholar]
  11. Jiang, M.Q., Dai, L.H. On the origin of shear banding instability in metallic glasses. Journal of the Mechanics and Physics of Solids, 2009, 57: 1267–1292 [CrossRef] [Google Scholar]
  12. Zhang, Z.F., Eckert, J. Unified Tensile Fracture Criterion. Physical Review Letters, 2005, PRL 94: 094301-1-4 [Google Scholar]
  13. Chen, Y., Jiang, M.Q., Wei, Y.J., et al. Failure criterion for metallic glasses. Philosophical Magazine, 2011, 91(36): 4536–4554 [CrossRef] [Google Scholar]
  14. Zhang, Z.F., Wu, F.F., Gao, W., et al. Wavy cleavage fracture of bulk metallic glass. Applied Physics Letters, 2006, 89: 251917-1-3 [Google Scholar]
  15. Wright, W.J., Hufnagel, T.C., Nix, W.D. Free volume coalescence and void formation in shear bands in metallic glass. Journal of Applied Physics, 2003; 93 (8):1432–1437 [CrossRef] [Google Scholar]
  16. Xue, Y.F., Cai, H.N., Wang, L., et al. Effect of loading rate on failure in Zr-based bulk metallic glass. Materials Science and Engineering A, 2008, 473: 105–110 [CrossRef] [Google Scholar]
  17. Jiang, M.Q., Ling, Z., Meng, J.X., et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philosophical Magazine, 2008, 21(8): 407–426 [CrossRef] [Google Scholar]
  18. Gao, Y.F. An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Modelling and Simulation in Materials Science and Engineering, 2006, 14: 1329–1345 [CrossRef] [Google Scholar]
  19. Chen, Y., Jiang, M.Q., Dai, L.H. How does the initial free volume distribution affect shear band formation in metallic glass?. Science China: Physics, Mechanics & Astronomy. 2011, 54 (8): 1488–1494 [CrossRef] [Google Scholar]
  20. Zhou, F., Wright, T.W., Ramesh, K.T. A numerical methodology for investigating the formation of adiabatic shear bands. Journal of the Mechanics and Physics of Solids, 2006, 54: 904–926 [CrossRef] [Google Scholar]
  21. Li, J.C., Wei, Q., Chen, X.W., et al. On the mechanism of deformation and failure in bulk metallic glasses. Materials Science and Engineering A, 2014, 610: 91–105 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.