Open Access
Issue
EPJ Web of Conferences
Volume 95, 2015
3rd International Conference on New Frontiers in Physics
Article Number 03011
Number of page(s) 11
Section Plenary
DOI https://doi.org/10.1051/epjconf/20159503011
Published online 29 May 2015
  1. M. Genovese, Research on hidden variable theories: a review of recent progresses, Phys. Rep. 413, 319 (2005) [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Brida, M. Genovese, and I. Ruo Berchera, Experimental realization of sub-shot-noise quantum imaging, Nature Phot. 4, 227 (2010). [CrossRef] [Google Scholar]
  3. G. Brida, M. Genovese, A. Meda, and I. Ruo Berchera, Experimental quantum imaging exploiting multimode spatial correlation of twin beams, Phys. Rev. A 83, 033811 (2011). [CrossRef] [Google Scholar]
  4. E. Lopaeva, I. Ruo Berchera, I. Degiovanni, S. Olivares, G. Brida, and M. Genovese, Experimental realisation of quantum illumination, Phys. Rev. Lett. 110, 153603 (2013). [CrossRef] [PubMed] [Google Scholar]
  5. E. Lopaeva, I. Ruo Berchera, S. Olivares, G. Brida, I.P. Degiovanni, and M. Genovese, A detailed description of the experimental realization of a quantum illumination protocol, Phys. Scr. T 160, 014026 (2014). [CrossRef] [Google Scholar]
  6. S.-H. Tan, B.I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J.H. Shapiro Quantum illumination with gaussian states, Phys. Rev. Lett. 101, 253601 (2008). [CrossRef] [PubMed] [Google Scholar]
  7. S. Ragy, I. Ruo Berchera, I.P. Degiovanni, S. Olivares, M.G.A. Paris, G. Adesso, and M. Genovese, Quantifying the source of enhancement in experimental continuous variable quantum illumination, J. Opt. Soc. Am. B 31, 2045–2050 (2014). [CrossRef] [Google Scholar]
  8. I. Ruo Berchera, I.P. Degiovanni, S. Olivares, and M. Genovese, Quantum light in coupled interferometers for quantum gravity tests, Phys. Rev. Lett. 110, 213601 (2013). [CrossRef] [PubMed] [Google Scholar]
  9. G. Brida, M. Genovese, A. Meda, I. Ruo Berchera, Experimental quantum imaging exploiting multi-mode spatial correlation of twin beams, Phys. Rev. A 83, 033811 (2011). [CrossRef] [Google Scholar]
  10. G. Brida, M.V. Chekhova, G.A. Fornaro, M. Genovese, L. Lopaeva, and I. Ruo Berchera, Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light, Phys Rev. A 83, 063807 (2011). [CrossRef] [Google Scholar]
  11. G. Brida, M. Chekhova, M. Genovese, and I. Ruo-Berchera, analysis of the possibility of analog detectors calibration by exploiting stimulated parametric down conversion, Optics Express 16, (2008) 12550; [CrossRef] [PubMed] [Google Scholar]
  12. A. Meda, I. Ruo-Berchera, I.P. Degiovanni, G. Brida, M.L. Rastello, and M. Genovese, Absolute calibration of a charge-coupled device camera with twin beams, Appl. Phys. Lett. 105, 101113 (2014). [CrossRef] [Google Scholar]
  13. O. Jedrkiewicz, Y.-K Jiang, E. Brambilla, A. Gatti, M. Bache, L.A. Lugiato, and P. Di Trapani, Detection of Sub-Shot-Noise Spatial Correlation in High-Gain Parametric Down Conversion, Phys. Rev. Lett. 93, 243601 (2004). [CrossRef] [PubMed] [Google Scholar]
  14. J. Peřina, Jr., M. Hamar, V. Michálek, and O. Haderka, Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera Phys. Rev. A 85, 023816 (2012). [CrossRef] [Google Scholar]
  15. M. Bondani, A. Allevi, G. Zambra, M.G.A. Paris, and A. Andreoni, Sub-shot-noise photon- number correlation in a mesoscopic twin beam of light, Phys. Rev. A 76, 013833 (2007). [CrossRef] [Google Scholar]
  16. T. Iskhakov, M.V. Chekhova, and G. Leuchs, Generation and direct detection of broadband mesoscopic polarization-squeezed vacuum, Phys. Rev. Lett. 102, 183602 (2009). [CrossRef] [PubMed] [Google Scholar]
  17. G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda and I. Ruo-Berchera, Measurement of sub-shot-noise spatial correlations without subtraction of background, Phys. Rev. Lett. 102, 213602 (2009). [CrossRef] [PubMed] [Google Scholar]
  18. T.S. Iskhakov, V.C. Usenko, R. Filip, M.V. Chekhova, and G. Leuchs, Low-noise macroscopic twin beams, arXiv:1408.6407 (2014) [Google Scholar]
  19. D. Gatto Monticone, K. Katamadze, P. Traina, E. Moreva, J. Forneris, I. Ruo Berchera, P. Olivero, I.P. Degiovanni, G. Brida, and M. Genovese, Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics, Phys. Rev. Lett. 113, 143602 (2014). [CrossRef] [PubMed] [Google Scholar]
  20. M.D. Lukin, A.B. Matsko, M. Fleischhauer, and M.O. Scully, Quantum Noise and Correlations in Resonantly Enhanced Wave Mixing Based on Atomic Coherence, Phys. Rev. Lett. 82, 1847 (1999). [CrossRef] [Google Scholar]
  21. C.F. McCormick, A.M. Marino, V. Boyer, and P.D. Lett, Strong low-frequency quantum correlations from a four-wave-mixing amplifier, Phys. Rev. A 78, 043816 (2008). [CrossRef] [Google Scholar]
  22. Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, Double-λ microscopic model for entangled light generation by four-wave mixing, Phys. Rev. A 82, 033819 (2010) [CrossRef] [Google Scholar]
  23. Q. Glorieux, PhD Thesis, Quantum correlations by four-wave-mixing in atomic vapor. Theory and Experiments, arXiv:1101.5166 (2011). [Google Scholar]
  24. R.E. Slusher, L. Hollberg, B. Yurke, J. Mertz and J. Valley, Squeezed states in optical cavities: A spontaneous-emission-noise limit, Phys. Rev. A 31, 3512 (1985). [CrossRef] [PubMed] [Google Scholar]
  25. M. Guo, H. Zhou, D. Wang, J. Gao, J. Zhang, and S. Zhu, Experimental investigation of high-frequency-difference twin beams in hot cesium atoms, Phys. Rev. A 89, 033813 (2014) [CrossRef] [Google Scholar]
  26. S. Zhang, M. Tengner, T. Zhong, F.N.C. Wong, and J.H. Shapiro, Entanglement’s benefit survives an entanglement-breaking channel, Phys. Rev. Lett. 111, 010501 (2013); [CrossRef] [PubMed] [Google Scholar]
  27. C. Weedbrook, S. Pirandola, J. Thompson, V. Vedral, M. Gu, Discord empowered quantum illumination, arXiv:1312.3332 (2013). [Google Scholar]
  28. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393, 763 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  29. G. Amelino-Camelia, Gravity-wave interferometers as quantum-gravity detectors, Nature 398, 216 (1999). [CrossRef] [Google Scholar]
  30. G. Amelino-Camelia, Astrophysics: Shedding light on the fabric of space-time, Nature 478, 466 (2011). [CrossRef] [PubMed] [Google Scholar]
  31. I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, and Čslav Brukner, Probing Planck-scale physics with quantum optics, Nature Phot. 8, 393 (2012); [Google Scholar]
  32. A.Albrecht et al., Tseting quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers, Phys. Rev. A 90, 033834 (2014). [CrossRef] [Google Scholar]
  33. G. Hogan, Interferometers probes of planckian quantum geometry, Phys. Rev. D 85, 064007 (2012). [CrossRef] [Google Scholar]
  34. Fermilab web site www.holometer.fnal.gov (03/23/2012). [Google Scholar]
  35. J.D. Bekenstein, Is a tabletop search for Planck scale signals feasible?, arXiv:1211.3816 (2012). [Google Scholar]
  36. P. Aschieri and L. Castellani, Noncommutative gravity solutions, Journ. of Geom. and Phys. 60, 375 (2010). [CrossRef] [Google Scholar]
  37. P. Aschieri and L. Castellani, Noncommutative D=4 gravity coupled to fermions, JHEP 06, 086 (2009). [CrossRef] [Google Scholar]
  38. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Phot. 5, 222 (2011). [Google Scholar]
  39. C.M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693 (1981). [CrossRef] [Google Scholar]
  40. K. McKenzie, D.A. Shaddock, D.E. McClelland, B.C. Buchler, and Ping Koy Lam, Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection, Phys. Rev. Lett. 88 231102 (2002). [CrossRef] [PubMed] [Google Scholar]
  41. The LIGO Scientific Collaboration (R. Schnabel et al.), A gravitational wave observatory operating beyond the quantum shot-noise limit, Nature Phys. 7, 962 (2011). [Google Scholar]
  42. The LIGO Scientific Collaboration (L. Barsotti et al.) Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Phot. 7, 613 (2013). [Google Scholar]
  43. S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, Quantum-dense metrology, Nature Phot. 7, 626 (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.