Open Access
EPJ Web of Conferences
Volume 95, 2015
3rd International Conference on New Frontiers in Physics
Article Number 03014
Number of page(s) 22
Section Plenary
Published online 29 May 2015
  1. BICEP2 Collaboration, Detection Of B-mode Polarization at Degree Angular Scales by BICEP2, Physical Review Letters 112, 241101 (June 2014). Original preprint version (March 2014): arXiv:1403.3985v1. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  2. BICEP2 Collaboration, BICEP2 II: Experiment and Three-Year Data Set, arXiv:1403.4302. [Google Scholar]
  3. A. Iljjas, P.J. Steinhardt and A. Loeb, Inflationary paradigm in trouble after Planck2013, arXiv:1402.6980, and references therein. [Google Scholar]
  4. A. Iljjas, P.J. Steinhardt and A. Loeb, Inflationary schism after Planck2013, Phys.Lett.B 723, 261 (2013), arXiv:1304.2785, and references therein. [NASA ADS] [CrossRef] [Google Scholar]
  5. A.H. Guth, D.I. Kaiser and Y. Nomura, Inflationary paradigm after Planck 2013, arXiv: 1312.7619, and references therein. [Google Scholar]
  6. A. Linde, Inflationary Cosmology after Planck 2013, arXiv:1402.0526, and references therein. [Google Scholar]
  7. Planck mission, European Space Agency, [Google Scholar]
  8. The Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076. [Google Scholar]
  9. The Planck Collaboration, Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082. [Google Scholar]
  10. The Planck Collaboration, Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, arXiv:1409.5738. [Google Scholar]
  11. H.Liu, P. Mertsch and S. Sarkar, Fingerprints of Galactic Loop I on the Cosmic Microwave Background, arXiv:1404.1899 [Google Scholar]
  12. See also the Planck Collaboration, Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust, arXiv:1405.0871, and subsequent papers. arXiv:1405.0872, arXiv:1405.0873 and arXiv:1405.0874. [Google Scholar]
  13. See, for instance, ESA and Planck, Planck: gravitational waves remain elusive, [Google Scholar]
  14. BICEP2/Keck and Planck Collaborations, A joint analysis of BICEP2/Keck Array and Planck data, arXiv:1502.00612. [Google Scholar]
  15. M.J. Mortonson and U. Seljak, A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty, arXiv:1405.5857. [Google Scholar]
  16. R. Flauger, J. C. Hill and D. N. Spergel, Toward an Understanding of Foreground Emission in the BICEP2 Region, arXiv:1405.7351. [Google Scholar]
  17. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (I), mp_arc 14-16, and references therein. [Google Scholar]
  18. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (II), mp_arc 14-60, and references therein. [Google Scholar]
  19. L. Gonzalez-Mestres, Tests and prospects of new physics at very high energy, these Proceedings. [Google Scholar]
  20. The Planck Collaboration, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083 and references therein. [Google Scholar]
  21. L. Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein. [Google Scholar]
  22. See, for instance, The Kavli Foundation, A New Baby Picture of the Universe, [Google Scholar]
  23. L. Gonzalez-Mestres, Pre-Big Bang, fundamental Physics and noncyclic cosmologies, International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00035 (2014), and references therein. Preprint at mp_arc 13–18. [Google Scholar]
  24. L. Gonzalez-Mestres, Pre-Big Bang, space-time structure, asymptotic Universe, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 – September 5, 2013, EPJ Web of Conferences 71, 00063 (2014), references therein and Post Scriptum to the preprint hal-00983005. [CrossRef] [EDP Sciences] [Google Scholar]
  25. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 13-33, and references therein. [Google Scholar]
  26. A. Ijjas, J.-L. Lehners and P.J. Steinhardt, Phys. Rev. D 89, 123520 (2014), arXiv:1404.1265. [CrossRef] [Google Scholar]
  27. R. Kallosh, A. Linde and A. Westphal, Chaotic Inflation in Supergravity after Planck and BICEP2, Phys. Rev. D 90, 023534 (2014), arXiv:1405.0270. [CrossRef] [Google Scholar]
  28. P.J. Steinhardt, Big Bang blunder bursts the multiverse bubble, Nature 510, 9 (2014). [CrossRef] [PubMed] [Google Scholar]
  29. P.J. Steinhardt, The inflation debate, Scientific American, April 2011, 36, [Google Scholar]
  30. G.W. Gibbons and N. Turok, The Measure Problem in Cosmology, Phys.Rev.D 77, 063516 (2008), arXiv:hep-th/0609095. [CrossRef] [Google Scholar]
  31. See, for instance,W. Hu and M. White, A CMB Polarization Primer, New Astron. 2, 323 (1997), arXiv:astro-ph/9706147, and references therein. [NASA ADS] [CrossRef] [Google Scholar]
  32. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48 (1996), 131, arXiv: astro-ph/9601090. [CrossRef] [Google Scholar]
  33. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017. [Google Scholar]
  34. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein. [Google Scholar]
  35. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv: physics/9702026. [Google Scholar]
  36. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212-213 (2011), 26, and references therein. The version arXiv:1011.4889 includes a relevant Post Scriptum. [CrossRef] [Google Scholar]
  37. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein. [Google Scholar]
  38. Wilkinson Microwave Anisotropy Probe, [Google Scholar]
  39. G. Bogdanoff, Fluctuations quantiques de la signature de la métrique à l’échelle de Planck, Thesis, Université de Bourgogne 1999, and related published papers. [Google Scholar]
  40. I. Bogdanoff, Etat topologique de l’espace-temps à l’échelle 0, Thesis, Université de Bourgogne 2002, and related published papers. [Google Scholar]
  41. L. Gonzalez-Mestres, Ultra-high energy physics and standard basic principles, 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, EPJ Web of Conferences 71, 00062 (2014), and Post Scriptum to the preprint mp_arc 14–31. [Google Scholar]
  42. H. Poincaré, Sur la dynamique de l’électron, Comptes rendus de l’Académie des Sciences 140, 1504 (1905), [Google Scholar]
  43. A. Einstein, Geometrie und erfahrung, Preus. Akad. der Wissench., Sitzungsberichte, part I, p. 123 (1921), English translation Geometry and experience in Sidelights on relativity, Methuen, London 1922, [Google Scholar]
  44. Caltech Observational Cosmology Group, BICEP: Robinson Gravitational Wave Background Telescope, [Google Scholar]
  45. K.W. Yoon et al., The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, Vol. 6275 (2006), arXiv:astro-ph/0606278. [Google Scholar]
  46. BICEP1 Collaboration, Degree-Scale CMB Polarization Measurements from Three Years of BICEP1 Data, ApJ 783, 67 (2014), arXiv:1310.1422. [Google Scholar]
  47. C.L. Kuo et al., Antenna-coupled TES bolometer arrays for CMB polarimetry, in SPIE Proceedings Vol. 7020, Marseille, 2008, arXiv:0908.1464. [Google Scholar]
  48. A. Orlando et al., Antenna-coupled TES Bolometer Arrays for BICEP2/Keck and SPIDER, in SPIE Proceedings Vol. 7741, San Diego, 2010, arXiv:1009.3685. [Google Scholar]
  49. C.L. Kuo et al., Antenna-coupled TES bolometers for the Keck Array, Spider, and Polar-1, arXiv: 1208.1247. See also and [Google Scholar]
  50. J.A. Brevik et al., Initial performance of the BICEP2 antenna-coupled superconducting bolometers at the South Pole, in SPIE Proceedings Vol. 7741, San Diego, 2010, [Google Scholar]
  51. Jet Propulsion Laboratory, California Institute of Technology, TES Bolometers Enable a New Probe of the Infant Universe, [Google Scholar]
  52. C.D. Sheehy et al., The Keck Array: a pulse tube cooled CMB polarimeter, arXiv:1104.5516. [Google Scholar]
  53. S. Kernasovskiy et al., Optimization and sensitivity of the Keck Array, arXiv: 1208.0857. [Google Scholar]
  54. Z.Ahmed et al., BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization, arXiv:1407.5928. [Google Scholar]
  55. B.A. Benson et al., A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope, arXiv:1407.2973. [Google Scholar]
  56. POLAR CMB Polarization Experiment, (Stanford University). See also Chao Lin-Kuo transparencies at the 2009 Meeting of the SLAC Users Organization. [Google Scholar]
  57. R. O’Brient et al., Antenna-coupled TES bolometers for the Keck Array, Spider, and Polar-1, arXiv:1208.1247. [Google Scholar]
  58. The POLARBEAR Collaboration, A Measurement of the Cosmic Microwave Background BMode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR, Astrophysical Journal 794, 171 (2014), arXiv:1403.2369. [NASA ADS] [CrossRef] [Google Scholar]
  59. Z. Kermish et al., The POLARBEAR Experiment, arXiv:1210.7768. [Google Scholar]
  60. D. Barron et al., Development and characterization of the readout system for POLARBEAR-2, arXiv:1410.7488. [Google Scholar]
  61. Atacama Cosmology Telescope (ACT), (NASA) and (Princeton University). [Google Scholar]
  62. M.D. Niemack et al., ACTPol: A polarization-sensitive receiver for the Atacama Cosmology Telescope, in SPIE Proceedings Vol. 7741, San Diego, 2010, arXiv:1006.5049. [Google Scholar]
  63. A. van Engelen, The Atacama Cosmology Telescope: Lensing of CMB Temperature and Polarization Derived from Cosmic Infrared Background Cross-Correlation, arXiv:1412.0626. [Google Scholar]
  64. J.E. Austermann et al., SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope, arXiv:1210.4970. [Google Scholar]
  65. K.T. Story et al., A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data, arXiv:1412.4760. [Google Scholar]
  66. J.W. Appel et al., The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz detector array of bolometric polarimeters, arXiv:1408.4789. [Google Scholar]
  67. K. Rostem et al., Scalable background-limited polarization-sensitive detectors for mm-wave applications, arXiv:1408.4790. [Google Scholar]
  68. J.P. Filippini et al., SPIDER: a balloon-borne CMB polarimeter for large angular scales, arXiv:1106.2158. [Google Scholar]
  69. A.S. Rahlin et al., Pre-flight integration and characterization of the SPIDER balloon-borne telescope, arXiv:1407.2906. [Google Scholar]
  70. R. Misawa et al., PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium, arXiv:1410.5760. [Google Scholar]
  71. The PILOT project, [Google Scholar]
  72. H.K. Eriksen et al., Asymmetries in the CMB anisotropy field, Astrophys.J. 605, 14 (2004) [NASA ADS] [CrossRef] [Google Scholar]
  73. and Erratum ibid. 609, 1198 (2004), arXiv: astro-ph/0307507. [Google Scholar]
  74. F. K. Hansen, A. J. Banday and K. M. Gorski, Testing the cosmological principle of isotropy: local power spectrum estimates of the WMAP data, Mon.Not.Roy.Astron.Soc. 354, 641 (2004), arXiv: astro-ph/0404206. [NASA ADS] [CrossRef] [Google Scholar]
  75. C.-G. Park, Non-Gaussian Signatures in the Temperature Fluctuation Observed by theWilkinson Microwave Anisotropy Probe, Mon.Not.Roy.Astron.Soc. 349, 313 (2004), arXiv:astro-ph/0307469. [NASA ADS] [CrossRef] [Google Scholar]
  76. ESA-Planck News, Planck reveals an almost perfect Universe, 21 March 2013 article. [Google Scholar]
  77. L. Gonzalez-Mestres, Properties of a possible class of particles able to travel faster than light, Proceedings of the January 1995 Moriond Workshop, Ed. Frontières, arXiv: astro-ph/9505117. [Google Scholar]
  78. K. Lundmark, Curvature of Space-Time in de Sitter′s World, MNRAS 84 (1924), 747, [CrossRef] [Google Scholar]
  79. G. Lemaître, Un Univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Ann. Soc. Sci. Brux. A 47 (1927), 49, [Google Scholar]
  80. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, PNAS 15 (1929), 168, [NASA ADS] [CrossRef] [Google Scholar]
  81. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Proceedings of the Invisible Universe International Conference (Paris 2009), AIP Conf.Proc. 1241 (2010), 120. The version arXiv:0912.0725 contains a relevant Post Scriptum. [Google Scholar]
  82. L. Gonzalez-Mestres, Pre-Big Bang, vacuum and noncyclic cosmologies, Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 479, and references therein. [Google Scholar]
  83. See, for instance, M.A. Vasil′ev and E.S. Fradkin, Gravitational interaction of massless highspin (s > 2) fields, JETP Letters 44, 622 (1986). [Google Scholar]
  84. V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975. [Google Scholar]
  85. L. Gonzalez-Mestres, Superbradyons and some possible dark matter signatures, arXiv:0905.4146. [Google Scholar]
  86. L. Gonzalez-Mestres, WMAP, Planck, cosmic rays and unconventional cosmologies, contribution to the Planck 2011 Conference, Paris, January 2011, arXiv:1110.6171. [Google Scholar]
  87. Some examples of recent attempts to understand the origin of space and time are quoted in Z. Merali, Theoretical physics: The origins of space and time, Nature 500, 516 (2013). [CrossRef] [PubMed] [Google Scholar]
  88. G. Lemaître, The Beginning of the World from the Point of View of Quantum Theory, Nature 127, 706 (1931). [NASA ADS] [CrossRef] [Google Scholar]
  89. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070, and references therein. [Google Scholar]
  90. See, for instance, M. Gasperini and G. Veneziano, in Beyond the Big Bang: Competing Scenarios for an Eternal Universe, Ed. R. Vaas, Springer-Verlag 2007, arXiv:hep-th/0703055. [Google Scholar]
  91. M. Gasperini, String theory and primordial cosmology, arXiv:1402.0101. [Google Scholar]
  92. See, for instance, P. Aurenche and L. Gonzalez-Mestres, Glueball singularity, flavor loops and the Harari-Freund picture, Zeitschrift für Physik C 1, 307 (1979), CERN preprint TH. 2568,and references therein. [Google Scholar]
  93. L. Gonzalez-Mestres, High-energy cosmic rays and tests of basic principles of Physics, International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16 2012, EPJ Web of Conferences 70, 00047 (2014), and references therein. Preprint at mp_arc 13–19. [CrossRef] [EDP Sciences] [Google Scholar]
  94. See, for instance Y.D. Takahashi, Cosmic Microwave Background Polarization: The Next Key Toward the Origin of the Universe, Berkeley 2009, and Wonders of the Cosmos, Berkeley 2010. [Google Scholar]
  95. J.W. Moffat, Variable Speed of Light Cosmology, Primordial Fluctuations and Gravitational Waves, arXiv:1404.5567. [Google Scholar]
  96. J.W. Moffat, Superluminal Gravitational Waves, arXiv: 1406.2609. [Google Scholar]
  97. J.W. Moffat, Structure Growth and the CMB in Modified Gravity (MOG), arXiv: 1409.0853. [Google Scholar]
  98. L. Gonzalez-Mestres, Testing fundamental principles with high-energy cosmic rays, HEP Europhysics Conference, Grenoble, July 2011, PoS EPS-HEP2011 390, and references therein. [Google Scholar]
  99. A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), 844. [Google Scholar]
  100. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik 354 (7) (1916), 769. [NASA ADS] [CrossRef] [Google Scholar]
  101. See, for instance, M. Trodden and S.M. Carroll, TASI lectures: Introduction to Cosmology, arXiv: astro-ph/0401547. [Google Scholar]
  102. J.W. Moffat, Quantum Gravity and the Cosmological Constant Problem, arXiv:1407.2086 [Google Scholar]
  103. The Pierre Auger Collaboration, Hightlights from the Pierre Auger Observatory, contribution to the ICRC 2013 Conference, arXiv:1310.4620, and references therein. [Google Scholar]
  104. The Pierre Auger Observatory, Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013), arXiv:1307.5059, and references therein. [Google Scholar]
  105. The Telescope Array Collaboration, Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment, arXiv:1404.5890. [Google Scholar]
  106. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070. [Google Scholar]
  107. L. Gonzalez-Mestres, Superluminal Matter and High-Energy Cosmic Rays, arXiv:astroph/9606054, and references therein. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.