Open Access
EPJ Web of Conferences
Volume 95, 2015
3rd International Conference on New Frontiers in Physics
Article Number 03019
Number of page(s) 16
Section Plenary
Published online 29 May 2015
  1. R. B. Palmer, J. C. Gallardo, in Proc. XXVIII Int. Conf. on High Energy Physics, ed. Z. Ajduk, A. K. Wroblewski (World Scientific, Singapore, 1997), p. 435. [Google Scholar]
  2. T. Han, Z. Liu, Phys. Rev. D 87 (2013) 033007. [CrossRef] [Google Scholar]
  3. V. Barger et al., “Particle physics opportunities at μ+μ colliders,” Nucl. Phys. B (Proc. Suppl.) 51A (1996) 13. [CrossRef] [Google Scholar]
  4. V. Barger et al., “Physics of Higgs Factories,” Proc. APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), SNOWMASS-2001-E110. [Google Scholar]
  5. D. Neuffer, “The First Muon Collider – 125 GeV Higgs Factory?”, AIP Conf. Proc. 1507, p. 849 (2012); [Google Scholar]
  6. D. Cline, X. Ding, J. Lederman, “Higgs Boson Muon Collider Factory: h0, A, H Studies,” Proc. IPAC’12, paper MOPPC042 (2012). [Google Scholar]
  7. ATLAS and CMS Collaborations, “Birth of a Higgs boson,” CERN Cour., Apr. 26, 2013, [Google Scholar]
  8. S. Geer, Phys. Rev. D 57, 6989 (1998); [CrossRef] [Google Scholar]
  9. ibid. 59, 039903E (1999); [Google Scholar]
  10. C. Albright et al., Fermilab-FN-692 (May 2000); [Google Scholar]
  11. M. Apollonio et al., CERN-TH-2002-208 (Oct. 2002); [Google Scholar]
  12. M. Lindner, in Neutrino Mass, ed. G. Altarelli, K. Winter, Springer Tracts in Modern Physics 190, 209 (2003). [CrossRef] [Google Scholar]
  13. R. Abrams et al. (IDS-NF Collaboration), “International Design Study for the Neutrino Factory, Interim Design Report,” arXiv:1112.2853 [hep-ex] (Mar. 2011). [Google Scholar]
  14. G. Gregroire et al., “An International Muon Ionization Cooling Experiment (MICE),” Proposal to Rutherford Appleton Laboratory,; MICE website: [Google Scholar]
  15. J.-P. Delahaye et al. (eds.), “Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society,” arXiv:1308.0494 [physics.acc-ph] (2013). [Google Scholar]
  16. See, e.g., M. A. Palmer, “An Overview of the US Muon Accelerator Program,” Proc. COOL’13, Mürren, Switzerland, June 2013, paper MOAM2HA02 (2013); [Google Scholar]
  17. MAP website: [Google Scholar]
  18. P. Kyberd et al., “nuSTORM: Neutrinos from STORed Muons,” arXiv:1206.0294 (2012). [Google Scholar]
  19. Particle Physics Project Priorization Panel, “Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context,”∼/media/hep/hepap/pdf/May%202014/FINAL_P5_Report_053014.pdf. [Google Scholar]
  20. R. B. Palmer, “Muon Colliders,” Rev. Accel. Sci. Tech. 7 (2014) 1 (to appear). [CrossRef] [Google Scholar]
  21. K.T. McDonald et al., “Target System Concept for a Muon Collider/Neutrino Factory,” Proc. IPAC2014, paper TUPRI008 (2014). [Google Scholar]
  22. K.T. McDonald et al., “The Merit High-Power Target Experiment at the CERN PS,” Proc. IPAC’10, paper WEPE078 (2010). [Google Scholar]
  23. X. Ding, H.G. Kirk, K.T. McDonald, “Carbon Target Optimization for a Muon Collier/Neutrino Factory with a 6.75 GeV Proton Driver,” Proc. IPAC2014, paper THPRI089 (2014); [Google Scholar]
  24. R.J. Weggel et al., “Design of Magnets for the Target and Decay Region of a Muon Collider /Neutrino Factory Target,” Proc. IPAC2013, paper TUPFI073 (2013). [Google Scholar]
  25. H. K. Sayed et al., “Optimizing Muon Capture and Transport for a Neutrino Factory/Muon Collider Front End,” Proc. IPAC2013, paper TUPFI075 (2013). [Google Scholar]
  26. J.-P. Delahaye et al., “A Staged Muon Accelerator Facility for Neutrino and Collider Physics,” Proc. IPAC2014, paper WEZA02 (2014). [Google Scholar]
  27. S. A. Bogacz, “Beam Dynamics of Low Energy Muon Acceleration,” Nucl. Phys. B Proc. Supp. 155, 334 (2006). [CrossRef] [Google Scholar]
  28. S. A Bogacz, “Maximizing Number of Passes in Muon RLA,” AIP Conf. Proc. 981, 324 (2008). [Google Scholar]
  29. V. S. Morozov et al., “Linear Fixed-field Multipass Arcs for Recirculating Linear Accelerators,” Phys. Rev. ST Accel. Beams 15, 060101 (2012). [CrossRef] [Google Scholar]
  30. D. J. Summers et al., “Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron,” Proc. IPAC2012, paper THPPD020 (2012). [Google Scholar]
  31. H. Witte et al., “Rapid Cycling Dipole Magnet,” Proc. NA-PAC13, paper TUPRO115 (2013); [Google Scholar]
  32. H. Witte, J. S. Berg, M. L. Lopes, “Progress on the Dipole Magnet for a Rapid Cycling Synchrotron,” Proc. IPAC2014, paper TUPRO115 (2014). [Google Scholar]
  33. D. J. Summers et al., “Muon Acceleration to 750 GeV in the Tevatron Tunnel for a 1.5 TeV μ+μCollider,” Proc. PAC07, paper THPMS082 (2007). [Google Scholar]
  34. J. S. Berg, A. A. Garren, “Hybrid Fast-Ramping Accelerator to 750 GeV/c: Refinement and Parameters over Full Energy Range,” Technical Report BNL-98171-2012-IR, MAP-doc-4335 (2012). [Google Scholar]
  35. D. Finley, N. Holtkamp (eds.), “Feasibility Study of a Neutrino Source Based on a Muon Storage Ring,” Report FERMILAB-PUB-00/108-E (2000). [Google Scholar]
  36. S. Ozaki, R. Palmer, M. Zisman, J. Gallardo eds., “Feasibility Study-II of a Muon-Based Neutrino Source,” Report BNL-52623, June 2001, available from [Google Scholar]
  37. A.V. Zlobin et al., “Storage Ring and Interaction Region Magnets for a μ+μ− Higgs Factory,” Proc. PAC2013, paper THPBA19 (2013); [Google Scholar]
  38. A.V. Zlobin et al., “Preliminary Design of a Higgs Factory |mu+μ− Storage Ring,” Proc. IPAC2013, paper TUPFI061 (2013). [Google Scholar]
  39. Y. Alexahin, E. Gianfelice-Wendt, A. Netepenko, “Conceptual design of the muon collider ring lattice,” Proc. IPAC’10, paper TUPEB021 (2010). [Google Scholar]
  40. Y. Alexahin, E. Gianfelice-Wendt, “A 3-TeV muon collider lattice design,” Proc. IPAC 2012, paper TUPPC041 (2012). [Google Scholar]
  41. Y. M. Ado, V. I. Balbekov, “Use of ionization friction in the storage of heavy particles,” At. Energ. 31(1) 40 (1971), [Google Scholar]
  42. English translation in Atomic Energy (Springer) 31 (1)731, [Google Scholar]
  43. D. Neuffer, AIP Conf. Proc. 156, p. 201 (1987); [CrossRef] [Google Scholar]
  44. D. Neuffer, “μ+μ− Colliders,” Yellow Report CERN-99-12 (1999); [Google Scholar]
  45. R. C. Fernow, J. C. Gallardo, Phys. Rev. E 52, 1039 (1995). [CrossRef] [Google Scholar]
  46. A. A. Zholents, M. Zolotorev, W. Wan, Phys. Rev. ST Accel. Beams 4, 031001 (2001). [CrossRef] [Google Scholar]
  47. S. Nagaitsev et al., “Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator,” Proc. IPAC’12, paper MOYCP01 (2012). [Google Scholar]
  48. Y. Bao, A. Caldwell, D. Greenwald, C. Blume, “Frictional cooling demonstration at MPP,” Proc. COOL2009 Workshop, paper TUM1MCCO03 (2009); [Google Scholar]
  49. T. J. Roberts, D. M. Kaplan, “Particle Refrigerator,” Proc. PAC’09, paper WE6PFP096 (2009); [Google Scholar]
  50. M. Mühlbauer et al., Hyperfine Interact. 119, 305 (1999). [CrossRef] [Google Scholar]
  51. Ya. Derbenev, R. P. Johnson, “Six-dimensional muon beam cooling using a homogeneous absorber: Concepts, beam dynamics, cooling decrements, and equilibrium emittances in a helical dipole channel,” Phys. Rev. ST Accel. Beams 8, 041002 (2005). [CrossRef] [Google Scholar]
  52. D. M. Kaplan, Proc. COOL’03 Workshop, Nucl. Instrum. Meth. A 532 (2004) 241. [CrossRef] [Google Scholar]
  53. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012). [Google Scholar]
  54. K. Yonehara et al., Proc. IPAC’13, paper TUPFI05 (2013); [Google Scholar]
  55. D. Bowring et al., Proc. IPAC’12, paper THPPC033 (2012); [Google Scholar]
  56. Y. Torun et al., Beam Dyn. Newslett. 55 (Aug. 2011) 103. [Google Scholar]
  57. MuCool Test Area website: [Google Scholar]
  58. See e.g. D. V. Neuffer, C. Yoshikawa, “Muon Capture for the Front End of a μ+-μ Collider,” Proc. Pac2011, paper MOP030 (2011), and [Google Scholar]
  59. J. S. Berg et al., “Cost-effective design for a neutrino factory,” Phys. Rev. ST Accel Beams 9, 011001 (2006). [Google Scholar]
  60. Y. Alexahin, “Circularly Inclined Solenoid Channel for 6D Ionization Cooling of Muons,” Proc. PAC09, paper TU3PBC04 (2009). [Google Scholar]
  61. C. Yoshikawa et al., “A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel,” Proc. PAC2013, paper THPHO19 (2013). [Google Scholar]
  62. D. Stratakis, R. B. Palmer, D. P. Grote, “Space-charge Studies for Ionization Cooling Lattices,” Proc. IPAC2013, paper TUPFI088 (2013). [Google Scholar]
  63. D. Stratakis, R. C. Fernow, J. S. Berg, R. B. Palmer, “Tapered channel for six-dimensional muon cooling towards micron-scale emittances,” Phys. Rev. ST Accel. Beams 16, 091001 (2013); [CrossRef] [Google Scholar]
  64. P. Snopok, G. G. Hanson, R. B. Palmer, “Simulations of the Tapered Guggenheim 6D Cooling Channel for the Muon Collider,” Proc. PAC2011, paper MOP059 (2011); [Google Scholar]
  65. P. Snopok, G. G. Hanson, “Six-Dimensional Cooling Lattice Studies for the Muon Collider,” Proc. IPAC10, paper WEPE080 (2010); [Google Scholar]
  66. P. Snopok, G. G. Hanson, “6D Cooling Simulations for the Muon Collider,” Proc. PAC2009, paper FR5PFP035 (2009); [Google Scholar]
  67. P. Snopok, G. G. Hanson, A. Klier, “Recent Progress on the 6D Cooling Simulations in the Guggenheim Channel,” Int. J. Mod. Phys. A 24, 987 (2009). [CrossRef] [Google Scholar]
  68. R. Palmer et al., “Ionization cooling ring for muons,” Phys. Rev. ST Accel. Beams 8, 061003 (2005). [CrossRef] [Google Scholar]
  69. D. Stratakis, R. B. Palmer, J. S. Berg, H.Witte, “Complete 6-Dimensional Muon Cooling Channel for a Muon Collider,” Proc. IPAC2014, paper TUPME020 (2014). [Google Scholar]
  70. K. Yonehara, “Progress of HCC Design and Simulation,” presented at MAP 2014 Spring Meeting, available at (2014). [Google Scholar]
  71. G. Flanagan et al., “Helical Muon Beam Cooling Channel Engineering Design,” Proc. IPAC2013, paper THPBA22 (2013). [Google Scholar]
  72. P. Hanlet et al., “High Pressure RF Cavities in Magnetic Fields,” Proc. EPAC 2006, p. 1364, June 2006. [Google Scholar]
  73. B. Freemire, “High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area,” PhD Thesis, Illinois Institute of Technology (2013). [Google Scholar]
  74. H. K. Sayed, J. S. Berg, R. B. Palmer, D. Stratakis, “Design and Simulation of a High Field - Low Energy Muon Ionization Cooling Channel,” Proc. IPAC14, paper TUPME019; [Google Scholar]
  75. R. B. Palmer, R. C. Fernow, J. Lederman, “Muon Collider Final Cooling in 30-50 T Solenoids,” Proc. PAC11, paper THOBN2 (2011). [Google Scholar]
  76. U. P. Trociewitz, “Another world record for the Magnet Lab: Research team generates worldrecord 35.4 tesla magnetic field using a superconducting insert magnet,” [Google Scholar]
  77. Y. Shiroyanagi et al., “15+ T HTS Solenoid for Muon Accelerator Program,” Proc. IPAC2012, paper THPPD048 (2012). [Google Scholar]
  78. J.A. Maloney et al., “Numerical Studies of Optimization and Aberration Correction Methods for the Preliminary Demonstration of the Parametric Ionization Cooling (PIC) Principle in the Twin Helix Muon Cooling Channel,” arXiv:1401.8256 [physics.acc-ph] (2014) and references therein. [Google Scholar]
  79. D. Summers, private communication. [Google Scholar]
  80. M. Ellis et al., “The design, construction and performance of the MICE scintillating fibre trackers,” Nucl. Instrum. Meth. A 659, 136 (2011). [CrossRef] [Google Scholar]
  81. F. F. Tikhonin, “On the Effects with Muon Colliding Beams,” JINR Report P2-4120 (Dubna, 1968); [Google Scholar]
  82. G. I. Budker, “Accelerators and Colliding Beams,” in Proc. 7th Int. Conf. on High-Energy Accelerators (Yerevan, 1969); [Google Scholar]
  83. extract available in AIP Conf. Proc. 352, 4 (1996). [Google Scholar]
  84. D. V. Neuffer, R. B. Palmer, “A high-energy high-luminosity μ+-μ− collider,” Proc. 1994 Eur. Particle Accelerator Conf. (EPAC94), p. 52; [Google Scholar]
  85. J. C. Gallardo et al., “Muon Muon Collider: Feasibility Study,” prepared for 1996 DPF/DPB Summer Study on New Directions in High-Energy Physics (Snowmass96), available from; [Google Scholar]
  86. C. M. Ankenbrandt et al., “Status of Muon Collider Research and Development and Future Plans,” Phys. Rev. ST Accel. Beams 2, 081001 (1999); [CrossRef] [Google Scholar]
  87. D. Ayres et al., “Expression of Interest in R&D towards a Neutrino Factory Based on a Storage Ring and a Muon Collider,” arXiv: physics/9911009; [Google Scholar]
  88. M. M. Alsharo’a et al., “Recent Progress in Neutrino Factory and Muon Collider Research within the Muon Collaboration,” Phys. Rev. ST Accel. Beams 6, 081001 (2003). [CrossRef] [Google Scholar]
  89. C. Y. Yoshikawa et al., “Intense Stopping Muon Beams,” Proc. PAC’09, paper MO6RFP080 (2009). [Google Scholar]
  90. Neutrino Factory and Muon Collider Collaboration (NFMCC) website: [Google Scholar]
  91. Muons, Inc. website: [Google Scholar]
  92. Muon Collider Task Force (MCTF) website: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.