Open Access
Issue
EPJ Web of Conferences
Volume 95, 2015
3rd International Conference on New Frontiers in Physics
Article Number 05007
Number of page(s) 13
Section Poster session
DOI https://doi.org/10.1051/epjconf/20159505007
Published online 29 May 2015
  1. L. Gonzalez-Mestres, BICEP2, Planck, spinorial space-time, pre-Big Bang, these Proceedings. Preprint versions at mp_arc 14-78 (preliminary) and https://archive.org/details/ICNFP2014talknew (final version). [Google Scholar]
  2. The Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076. [Google Scholar]
  3. The Planck Collaboration, Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082. [Google Scholar]
  4. The Planck Collaboration, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083 and references therein. [Google Scholar]
  5. BICEP2 Collaboration, Detection Of B-mode Polarization at Degree Angular Scales by BICEP2, Physical Review Letters 112, 241101 (June 2014). Original preprint version (March 2014): arXiv:1403.3985v1. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  6. BICEP2 Collaboration, BICEP2 II: Experiment and Three-Year Data Set, arXiv:1403.4302. [Google Scholar]
  7. BICEP2/Keck and Planck Collaborations, A joint analysis of BICEP2/Keck Array and Planck data, arXiv:1502.00612. [Google Scholar]
  8. The Planck Collaboration, Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, arXiv:1409.5738 [Google Scholar]
  9. H.Liu, P. Mertsch and S. Sarkar, Fingerprints of Galactic Loop I on the Cosmic Microwave Background, arXiv:1404.1899. [Google Scholar]
  10. R. Flauger, J. C. Hill and D. N. Spergel, Toward an Understanding of Foreground Emission in the BICEP2 Region, arXiv:1405.7351. [Google Scholar]
  11. The Planck Collaboration, Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust, arXiv:1405.0871, and subsequent papers arXiv:1405.0872, arXiv:1405.0873 and arXiv:1405.0874. [Google Scholar]
  12. L. Gonzalez-Mestres, Spinorial space-time and privileged space direction (I), mp_arc 13-75, and references therein. [Google Scholar]
  13. L. Gonzalez-Mestres, Spinorial space-time and Friedmann-like equations (I), mp_arc 13-80, and references therein. [Google Scholar]
  14. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (I), mp_arc 14-16, and references therein. [Google Scholar]
  15. L. Gonzalez-Mestres, CMB B-modes, spinorial space-time and Pre-Big Bang (II), mp_arc 14-60, and references therein. [Google Scholar]
  16. L. Gonzalez-Mestres, Physical and Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, contribution to the 28th International Conference on High Energy Physics, Warsaw 1996, arXiv:hep-ph/9610474, and references therein. [Google Scholar]
  17. L. Gonzalez-Mestres, Space, Time and Superluminal Particles, arXiv:physics/9702026. [Google Scholar]
  18. P.J. Steinhardt, The inflation debate, Scientific American, April 2011, 36, http://www.physics.princeton.edu/steinh/0411036.pdf [CrossRef] [Google Scholar]
  19. G.W. Gibbons and N. Turok, The Measure Problem in Cosmology, Phys.Rev.D 77, 063516 (2008), arXiv:hep-th/0609095. [CrossRef] [Google Scholar]
  20. Planck mission (European State Agency), http://sci.esa.int/planck/ [Google Scholar]
  21. A. Iljjas, P.J. Steinhardt and A. Loeb, Inflationary paradigm in trouble after Planck2013, arXiv:1402.6980, and references therein. [Google Scholar]
  22. A. Iljjas, P.J. Steinhardt and A. Loeb, Inflationary schism after Planck2013, Phys.Lett.B 723, 261 (2013), arXiv:1304.2785, and references therein. [NASA ADS] [CrossRef] [Google Scholar]
  23. A.H. Guth, D.I. Kaiser and Y. Nomura, Inflationary paradigm after Planck 2013, arXiv:1312.7619, and references therein. [Google Scholar]
  24. A. Linde, Inflationary Cosmology after Planck 2013, arXiv:1402.0526, and references therein. [Google Scholar]
  25. A. Iljjas, J.-L. Lehners and P.J. Steinhardt, Phys. Rev. D 89, 123520 (2014), arXiv:1404.1265. [CrossRef] [Google Scholar]
  26. R. Kallosh, A. Linde and A. Westphal, Chaotic Inflation in Supergravity after Planck and BICEP2, Phys. Rev. D 90, 023534 (2014), arXiv:1405.0270. [CrossRef] [Google Scholar]
  27. P.J. Steinhardt, Big Bang blunder bursts the multiverse bubble, Nature 510, 9 (2014). [CrossRef] [PubMed] [Google Scholar]
  28. R. Kallosh and A. Linde, Inflation and Uplifting with Nilpotent Superfields, arXiv:1409.8197. [Google Scholar]
  29. A. Linde, Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?, arXiv:1412.7111. [Google Scholar]
  30. J. Ellis et al., Two-Field Analysis of No-Scale Supergravity Inflation, arXiv:1408.5950. [Google Scholar]
  31. J. Ellis et al., Flipped GUT inflation, arXiv:1412.1460. [Google Scholar]
  32. N. Mavromatos, Gravitino Condensates in the Early Universe and Inflation, these Proceedings, arXiv:1412.6437. [Google Scholar]
  33. A. Westphal, Cosmology - Large-Field Inflation in String Theory, arXiv:1409.5350. [Google Scholar]
  34. M.A. Amin et al., Nonperturbative Dynamics Of Reheating After Inflation: A Review, arXiv:1410.3808. [Google Scholar]
  35. G. Lemaître, The Beginning of the World from the Point of View of Quantum Theory, Nature 127, 706 (1931). [NASA ADS] [CrossRef] [Google Scholar]
  36. L. Gonzalez-Mestres, Cosmological Implications of a Possible Class of Particles Able to Travel Faster than Light, Proceedings of the TAUP 1995 Conference, Nucl. Phys. Proc. Suppl. 48 (1996), 131, arXiv:astro-ph/9601090. [CrossRef] [Google Scholar]
  37. L. Gonzalez-Mestres, Vacuum Structure, Lorentz Symmetry and Superluminal Particles, arXiv:physics/9704017. [Google Scholar]
  38. L. Gonzalez-Mestres, Properties of a possible class of particles able to travel faster than light, Proceedings of the January 1995 Moriond Workshop, Ed. Frontières, arXiv:astro-ph/9505117. [Google Scholar]
  39. L. Gonzalez-Mestres, Lorentz symmetry violation, dark matter and dark energy, Proceedings of the Invisible Universe International Conference (Paris 2009), [Google Scholar]
  40. AIP Conf.Proc. 1241 (2010), 120. The arXiv.org version arXiv:0912.0725 contains a relevant Post Scriptum. [Google Scholar]
  41. L. Gonzalez-Mestres, Pre-Big Bang, fundamental Physics and noncyclic cosmologies, International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 2012, [Google Scholar]
  42. EPJ Web of Conferences 70, 00035 (2014), and references therein. Preprint version at mp_arc 13-18. [CrossRef] [EDP Sciences] [Google Scholar]
  43. L. Gonzalez-Mestres, Cosmic rays and tests of fundamental principles, CRIS 2010 Proceedings, Nucl. Phys. B, Proc. Suppl. 212–213 (2011), 26, and references therein. The arXiv.org version arXiv:1011.4889 includes a relevant Post Scriptum. [Google Scholar]
  44. L. Gonzalez-Mestres, Pre-Big Bang, vacuum and noncyclic cosmologies, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 479, and references therein. [Google Scholar]
  45. L. Gonzalez-Mestres, WMAP, Planck, cosmic rays and unconventional cosmologies, contribution to the Planck 2011 Conference, Paris, January 2011, arXiv:1110.6171. [Google Scholar]
  46. L. Gonzalez-Mestres, Pre-Big Bang, space-time structure, asymptotic Universe, talk given at the 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, [Google Scholar]
  47. EPJ Web of Conferences 71, 00063 (2014). See also the Post Scriptum to the preprint version, hal-00983005. [CrossRef] [EDP Sciences] [Google Scholar]
  48. L. Gonzalez-Mestres, Planck data, spinorial space-time and asymptotic Universe, mp_arc 13-33, and references therein. [Google Scholar]
  49. J.W. Moffat, Variable Speed of Light Cosmology, Primordial Fluctuations and Gravitational Waves, arXiv:1404.5567. [Google Scholar]
  50. J.W. Moffat, Superluminal Gravitational Waves, arXiv:1406.2609. [Google Scholar]
  51. J.W. Moffat, Structure Growth and the CMB in Modified Gravity (MOG), arXiv:1409.0853. [Google Scholar]
  52. J.W. Moffat, Quantum Gravity and the Cosmological Constant Problem, arXiv:1407.2086. [Google Scholar]
  53. G. Bogdanoff, Fluctuations quantiques de la signature de la métrique à l’échelle de Planck, Thesis, Université de Bourgogne 1999, and related published papers. [Google Scholar]
  54. I. Bogdanoff, Etat topologique de l’espace-temps à l’échelle 0, Thesis, Université de Bourgogne 2002, and related published papers. [Google Scholar]
  55. L. Gonzalez-Mestres, Testing fundamental principles with high-energy cosmic rays, 2011 Europhysics Conference on High Energy Physics, Grenoble, July 2011, PoS EPS-HEP2011 390, and references therein. [Google Scholar]
  56. L. Gonzalez-Mestres, Ultra-high energy physics and standard basic principles, contribution the 2nd International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, August 28 - September 5, 2013, [Google Scholar]
  57. EPJ Web of Conferences 71, 00062 (2014). See also the Post Scriptum to the preprint version, mp_arc 14-31. [CrossRef] [EDP Sciences] [Google Scholar]
  58. L. Gonzalez-Mestres, High-energy cosmic rays and tests of basic principles of Physics, presented at the International Conference on New Frontiers in Physics, ICFP 2012, Kolymbari, Crete, June 10-16, 2012, [Google Scholar]
  59. EPJ Web of Conferences 70, 00047 (2014), and references therein. Preprint version at mp_arc 13-19. [CrossRef] [EDP Sciences] [Google Scholar]
  60. A.Watson, High-Energy Cosmic Rays and the Greisen-Zatsepin-Kuzmin Effect, Rept.Prog.Phys. 77 (2014) 036901, arXiv:1310.0325. [CrossRef] [Google Scholar]
  61. The Pierre Auger Collaboration, Hightlights from the Pierre Auger Observatory, contribution to the ICRC 2013 Conference, arXiv:1310.4620, and references therein. [Google Scholar]
  62. The Pierre Auger Observatory, Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013), arXiv:1307.5059,and references therein. [Google Scholar]
  63. K. Greisen, End to the Cosmic-Ray Spectrum? Phys.Rev.Lett. 16 (1966), 748, http://physics.princeton.edu/mcdonald/examples/EP/greisens_prl_16_748_66.pdf [NASA ADS] [CrossRef] [Google Scholar]
  64. G.T. Zatsepin and V.A. Kuz’min, Upper Limit on the Spectrum of Cosmic Rays, JETP Letters 4, 78 [Google Scholar]
  65. The Telescope Array Collaboration, Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment, arXiv:1404.5890. [Google Scholar]
  66. The Pierre Auger Observatory, Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80◦, arXiv:1411.6953, and references therein. [Google Scholar]
  67. L. Gonzalez-Mestres, Preon models, relativity, quantum mechanics and cosmology (I), arXiv:0908.4070. [Google Scholar]
  68. L. Gonzalez-Mestres, Superbradyons and some possible dark matter signatures, arXiv:0905.4146 [Google Scholar]
  69. L. Gonzalez-Mestres, Superluminal Matter and High-Energy Cosmic Rays, arXiv:astroph/9606054, and references therein. [Google Scholar]
  70. L. Gonzalez-Mestres, Proceedings of the 25th International Cosmic Ray Conference, Potchefstroomse Universiteit 1997, Vol. 6, p. 113. Available at arXiv.org, arXiv:physics/9705031. [Google Scholar]
  71. L. Gonzalez-Mestres, Proc. Heidelberg 2000 Int. Symp. HE -Ray Astr., AIP Conf.Proc. 558 (2001), 874, available at arXiv.org, astro-ph/0011182. [CrossRef] [Google Scholar]
  72. See, for instance, S.K. Lamoreaux, Systematic Correction for “Demonstration of the Casimir Force in the 0.6 to 6 micrometer Range”, arXiv:1007.4276, and references therein. [Google Scholar]
  73. See, for instance, R.L. Jaffe, The Casimir Effect and the Quantum Vacuum, Phys. Rev. D 72, 021301 (2005), arXiv:hep-th/0503158, and references therein. [CrossRef] [MathSciNet] [Google Scholar]
  74. Wilkinson Microwave Anisotropy Probe, http://map.gsfc.nasa.gov/. [Google Scholar]
  75. J. Wess, q-Deformed Heisemberg Algebras, Lectures given at the 38. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming (Austria), January 1999, arXiv:mathph/9910013, and references therein. [Google Scholar]
  76. S. Majid and H. Ruegg, Bicrossproduct structure of the Poincaré group and noncommutative geometry, Physics Letters B 334, 348–354 (1994), arXiv:hep-th/9405107. [CrossRef] [MathSciNet] [Google Scholar]
  77. A. Connes and J. Lott, Particle models and noncommutative geometry, Nucl. Phys. Proc. Suppl. B 18, 29 (1990), http://deepblue.lib.umich.edu/bitstream/handle/2027.42/29524/0000611.pdf [CrossRef] [MathSciNet] [Google Scholar]
  78. N.E. Mavromatos and R.J. Szabo, arXiv.org, arXiv:hep-th/9811116 [Google Scholar]
  79. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09, 032 (1999), arXiv:hep-th/9908142. [CrossRef] [Google Scholar]
  80. L.Gonzalez-Mestres, Lorentz Symmetry Violation and Very High-Energy Cross Sections, International Conference on Relativistic Physics and some of its Applications, Athens, June 1997, arXiv:physics/9706022. [Google Scholar]
  81. J.D. Bancal et al., Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling, Nature Physics 8, 867 (2012), arXiv:1110.3795. [CrossRef] [Google Scholar]
  82. See, for instance, M. Fayngold, On the Superluminal Quantum Tunneling and “Causality Violation”, arXiv:1412.7200. [Google Scholar]
  83. J. Walleczek and G. Groessing, Nonlocal quantum information transfer without superluminal signalling and communication, arXiv:1501.07177. [Google Scholar]
  84. P.J. Coles, J. Kaniewski and S. Wehner, Equivalence of wave-particle duality to entropic uncertainty, Nature Communications 5, 5814 (2014), arXiv:1403.4687. [CrossRef] [PubMed] [Google Scholar]
  85. S. Wehner and A. Winter, Entropic uncertainty relations - A survey, New Journal of Physics - Special Issue on Quantum Information and Many-Body Theory, 12, 025009 (2010), arXiv:0907.3704. [Google Scholar]
  86. G. Jaeger, A. Shimony and L. Vaidman, Two interferometric complementarities, Phys. Rev. A 51 54 (1995), available at atomwave.org [CrossRef] [PubMed] [Google Scholar]
  87. B.G. Englert, Fringe Visibility and Which-Way Information: An Inequality, Phys. Rev. Lett. 77, 2154 (1966), available at atomwave.org [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.