Open Access
EPJ Web of Conferences
Volume 100, 2015
Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2015)
Article Number 01008
Number of page(s) 9
Section Nuclear Physics
Published online 09 July 2015
  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press), (2000). [Google Scholar]
  2. J. Gruska: Quantum Computing, Advanced Topics in Computer Science Series, The McGraw-Hill Companies, ISBN 007 709503 0.F (1999). [Google Scholar]
  3. M. Dobšíček: Quantum computing, phase estimation and applications, Ph.D. thesis, Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Computer Science and Engineering, (2008). [Google Scholar]
  4. S.J. Aaronson: Limits on Efficient Computation in the Physical World, Dissertation, University of California, Berkeley, (2004). [Google Scholar]
  5. R.P. Feynmann, Int. J. Theor. Phys., 21, 6/7, (1982). [Google Scholar]
  6. D. Deutsch, R. Jozsa, Proc. R. Soc. London A 439: 553–558 (1992). [Google Scholar]
  7. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. R. Soc. London A 454: 339–354 (1998). [Google Scholar]
  8. C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, SIAM J. Compt. 26(5): 1510–1523 (1997). [CrossRef] [MathSciNet] [Google Scholar]
  9. P.W. Shor, Proc. 35th Ann. IEEE Symp. Found. p. 124 (1994). [Google Scholar]
  10. [Google Scholar]
  11. F. Bussières, et al., Nature Photon., DOI: 10.1038/nphoton.2014.215. [Google Scholar]
  12. D.S. Abrams, S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999). [Google Scholar]
  13. A. Aspuru-Guzik, et al., Science 309, 1704 (2005). [CrossRef] [PubMed] [Google Scholar]
  14. H. Wang, et al., Phys. Chem. Chem. Phys. 10, 5388–5393 (2008). [CrossRef] [PubMed] [Google Scholar]
  15. J.D. Whitfield, J. Biamonte, A. Aspuru-Guzik, Mol. Phys. 109, 735 (2011). [CrossRef] [Google Scholar]
  16. L. Veis, J. Pittner, J. Chem. Phys. 133, 194106 (2010). [CrossRef] [PubMed] [Google Scholar]
  17. B.P. Lanyon, et al., Nat. Chem. 2, 106 (2010). [Google Scholar]
  18. L. Veis, J. Višňák, T. Fleig, S. Knecht, T. Saue, L. Visscher, J. Pittner, Phys. Rev. A 85, 030304(R), 2012. [CrossRef] [Google Scholar]
  19. Ch.-L. Wu, CJP, 34, No. 3-II (1996). [Google Scholar]
  20. B. Toloui, P.J. Love, J. Chem. Phys. arXiv:1312.2579v2, (2014). [Google Scholar]
  21. K.G. Dyall, K. Faegri, Introduction to Relativistic Quantum Chemistry (Oxford University Press, New York, 2007). [Google Scholar]
  22. W.P. Shor, Phys. Rev. A 52, R2493(R), 1995. [Google Scholar]
  23. D. Gottesman, Quantum Information Science and Its Contributions to Mathematics, Proc. Sympos. Appl. Math. 68, pp. 13–58 (Amer. Math. Soc., Providence, Rhode Island, 2010), arXiv:0904.2557. [Google Scholar]
  24. K. Vogel, H. Risken, Phys. Rev. A 40, 2847–2849 (1989). [CrossRef] [PubMed] [Google Scholar]
  25. M. Cramer, et al., Nat. Comm., 1, 149, 2010. [CrossRef] [Google Scholar]
  26. H. Wolkowicz, G.P.H. Styan, Linear Algebra Appl. 29, 471–506, 1980. [CrossRef] [MathSciNet] [Google Scholar]
  27. K.G. Garren: Bounds for the Eigenvalues of a Matrix, NASA TN D-4373, 1968. [Google Scholar]
  28. L.M. Delves, J. Phys. A : Gen. Phys., 5, 1972. [Google Scholar]
  29. Löwdin P.-O. and Quantum Chemistry Group, Phys Rev, 139, A357, 1965. [CrossRef] [Google Scholar]
  30. J. Višňák, Integral error of the solution of the Schroedinger equation for selected systems, Bachelor Thesis, Mathematical-Physical Faculty, Charles University in Prague, (In Czech, 2007). [Google Scholar]
  31. R.B. Griffiths, Ch-S. Niu, Phys. Rev. Lett. 76, No 17, 3228–3231 (1996). [CrossRef] [PubMed] [Google Scholar]
  32. J. Višňák, Quantum chemical algorithms for Quantum Computers, Diploma Thesis, Mathematical-Physical Faculty, Charles University in Prague (In Czech, 2012). [Google Scholar]
  33. N. Hatano and M. Suzuki, Quantum annealing and other optimization methods, in Lecture Notes in Physics, chap. Finding Exponential Product Formulas of Higher Orders, Springer, Heidelberg, 2005. [Google Scholar]
  34. S. Wiesner, arXiv:quant-ph/9603028v1 (1996). [Google Scholar]
  35. C. Zalka, Proc. R. Soc. A 454, 313–322 (1998). [CrossRef] [Google Scholar]
  36. D.S. Abrams, S. Lloyd, Phys. Rev. Lett. 79, 2586–2589 (1997). [CrossRef] [Google Scholar]
  37. R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik, N. Wiebe, Phys. Rev. A 91, 022311 (2015). [CrossRef] [Google Scholar]
  38. M-H. Yung, J.D. Whitfield, S. Boixo, D. Tempel, A. Aspuru-Guzik, Adv. Chem. Phys. 154 (2014). [Google Scholar]
  39. M. Dobšíček, G. Johansson, V. Shumeiko, G. Wendin, Quantum Simulations: Report, Chalmers University, MC2 (2010). [Google Scholar]
  40. T. Hamada, I.D. Johnston, Nucl. Phys. 34, 382–403 (1962). [CrossRef] [Google Scholar]
  41. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C, 51, No 1 (1995). [Google Scholar]
  42. S.N. Mosley, The positive radial momentum operator, arXiv: math-ph/0309055, (2003). [Google Scholar]
  43. A. Klappenecker, M. Rötteler, Proc 2nd ISPA01, 37, 464–468, IEEE (2001). [Google Scholar]
  44. P. Jordan, E. Wigner, Z. Phys., 47, Issue 9-10, pp 631–651 (1928). [Google Scholar]
  45. S.B. Bravyi, A.Y. Kitaev, Ann. Phys. 298, Iss. 1, 210–226 (2002). [CrossRef] [Google Scholar]
  46. J.T. Seeley, M.J. Richard, P.J. Love, J. Chem. Phys. 137, Iss. 22, p 224109 (2012). [CrossRef] [PubMed] [Google Scholar]
  47. R. Somma, G. Ortiz, E. Knill, J. Gubernatis, Int. J. Quantum Inform. 01, 189 (2003). [CrossRef] [Google Scholar]
  48. J. Višňák, L. Veis, J. Pittner, H. Nakai, Quantum chemistry beyond Born-Oppenheimer approximation on a quantum computer: a simulated phase estimation study (to be published). [Google Scholar]
  49. J.R. McClean, R. Babbush, P.J. Love, A. Aspuru-Guzik, J. Phys. Chem. Lett., 5 Iss. 24, pp 4368–4380 (2014). [CrossRef] [PubMed] [Google Scholar]
  50. D. Wecker, B. Bauer, B.K. Clark, M.B. Hastings, M. Troyer, Phys. Rev. A 90, 022305 (2014). [CrossRef] [Google Scholar]
  51. D. Poulin, M.B. Hastings, D. Wecker, N. Wiebe, A.C. Doherty, M. Troyer, arXiv:1406.4920v1 (2014). [Google Scholar]
  52. L. Veis, J. Pittner, J. Chem. Phys. 140, 214111 (2014). [Google Scholar]
  53. J.-S. Xu, M.-H.Yung, X.-Y. Xu, S. Boixo, Z.-W. Zhou, Ch.-F. Li, A. Aspuru-Guzik, G.-C. Guo, Nat Photonics 8, 113–118, (2014). [CrossRef] [Google Scholar]
  54. D.W. Berry, A.M. Childs, Quantum Inf. Comput. 12, 29 (2012). [Google Scholar]
  55. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, 46th STOC 2014 Proc., 283–292 (2014). [Google Scholar]
  56. A. Peruzzo, J. McClean, P. Shadbolt, M-H. Yung, XQ. Zhou, P.J. Love, A. Aspuru-Guzik, J.L. O’Brien, Nat Comm, 5, 4213, (2014). [CrossRef] [Google Scholar]
  57. L. Hales, S. Hallgren, 41st Proc. Ann. IEEE Symp (Comp Sci) Found, p. 515–525 (2000). [Google Scholar]
  58. Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014). [Google Scholar]
  59. [Google Scholar]
  60. Y. Wang, et al., Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register, ACS Nano, (2015). [Google Scholar]
  61. A. Günther, R. Roth, H. Hergert, S. Reinhardt, Phys. Rev. C 82, 024319 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.