Open Access
Issue
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
Article Number 02095
Number of page(s) 6
Section Contributions
DOI https://doi.org/10.1051/epjconf/201611402095
Published online 28 March 2016
  1. T. Bohdal, Annual Set Env. Protect. 15, 107–126 (2013) [Google Scholar]
  2. T. Bohdal, W. Kuczyński, Heat Tran. Eng. 32 (5), 359–368 (2011) [CrossRef] [Google Scholar]
  3. K. Dutkowski, Heat Tran. Eng. 31, 321–330 (2010) [CrossRef] [Google Scholar]
  4. C. N. Ammerman, S. M. You, J. Heat Tran. 123, 976–983 (2001) [CrossRef] [Google Scholar]
  5. A. Kosar, C.-J. Kuo, Y. Peles, Int. J. Heat Mass Tran. 48, 4867–4886 (2005) [CrossRef] [Google Scholar]
  6. C.-J. Kuo., Y. Peles, Int. J. Heat Mass Tran. 50, 4513–4526 (2007) [CrossRef] [Google Scholar]
  7. V. Khanikar, I. Mudawar, T. Fisher, Int. J. Heat Mass Tran. 52, 3805–3817 (2009) [CrossRef] [Google Scholar]
  8. H. Wang, R. B. Peterson, IEEE Trans. Compon. Pack. Techn. 33, 784–793 (2010) [CrossRef] [Google Scholar]
  9. Y. Sun, L. Zhang, H. Xu, X. Zhong, Exp. Therm. Fluid Sci. 35, 1418–1426 (2011) [CrossRef] [Google Scholar]
  10. Y. Sun, L. Zhang, H. Xu, X. Zhong, Int. J. Therm. Sci. 50, 881–889 (2011) [CrossRef] [Google Scholar]
  11. M. Piasecka, Exp. Heat Tran. 27, 231–255 (2014) [CrossRef] [Google Scholar]
  12. M. Piasecka, Heat Tran. Eng. 35 (10), 903–912 (2014) [CrossRef] [Google Scholar]
  13. M. Piasecka, Int. J. Heat Mass Tran. 81, 114-121 (2015) [CrossRef] [Google Scholar]
  14. M. Piasecka, Int. J. Refrig. 56, 198–212 (2015) [CrossRef] [Google Scholar]
  15. M. Piasecka, Ann. Nucl. Energy 73, 282–293 (2014) [CrossRef] [Google Scholar]
  16. M. Piasecka, Adv. Mater. Research 874, 95–100 (2014) [CrossRef] [Google Scholar]
  17. W. Depczyński, Proc. 23rd Int. Conf. Metallurgy Materials METAL 2014, Poland (2014) [Google Scholar]
  18. W. Depczyński, S. Spadło, P. Młynarczyk, E. Ziach, Proc. 24th Int. Conf. Metallurgy Materials METAL 2015, Poland (2015) [Google Scholar]
  19. B. Grabas, Arch. Metall. Mater. 60 (1), 33–39 (2015) [Google Scholar]
  20. B. Grabas, Exp. Therm. Fluid Sci. 68, 499–508 (2015) [CrossRef] [Google Scholar]
  21. B. Grabas, Adv. Mater. Research 874, 71–75 (2014) [CrossRef] [Google Scholar]
  22. N. Radek, J. Pietraszek, B. Antoszewski, Adv. Mater. Research 874, 29–34 (2014) [CrossRef] [Google Scholar]
  23. J. Pietraszek, N. Radek, K. Bartkowiak, Solid State Phen. 197, 198-202 (2013) [CrossRef] [Google Scholar]
  24. N. Radek, B. Antoszewski, Kovove Materialy-Metallic Materials 47 (1), 31–38 (2009) [Google Scholar]
  25. R. Pastuszko, M. Piasecka, J. Physics Conf. Ser. 395, paper No. 012137 (2012) [CrossRef] [Google Scholar]
  26. R. Pastuszko, M. Wójcik, Exp. Therm. Fluid Sci. 63, 34–44 (2015) [CrossRef] [Google Scholar]
  27. R. Pastuszko, EPJ Web Conf. 45, paper No. 01020 (2013) [CrossRef] [EDP Sciences] [Google Scholar]
  28. G. M. Carlomagno, G. Cardone, Exp. Fluids 49, 1187–1218 (2010) [CrossRef] [Google Scholar]
  29. B. Mehta, A. Dhyani, S. Khandekar, Proc. 21st National & 10th ISHMT-ASME Heat Mass Tran. Conf. Madras, India, paper ISHMT_IND_02_041 (2011) [Google Scholar]
  30. B. Mehta, S. Khandekar, Exp. Therm. Fluid Sci. 42, 219–229 (2012) [CrossRef] [Google Scholar]
  31. D. Mikielewicz, J. Wajs, M. Gliński, A.-B. R.S Zrooga, Exp. Therm. Fluid Sci. 44, 556–564 (2014) [CrossRef] [Google Scholar]
  32. B. Mehta, S. Khandekar, Int. J. Heat Fluid Flow 45, 41–52 (2014) [CrossRef] [Google Scholar]
  33. H. Seo, J. H. Chu, S.-Y. Kwon, I. Ch. Bang, Int. J. Heat Mass Tran. 82, 490–502 (2015) [CrossRef] [Google Scholar]
  34. C. E. Estrada-Perez, J. Yoo, Y. A. Hassan, Int. J. Multiph. Flow 73, 17–33 (2015) [CrossRef] [Google Scholar]
  35. J. Yoo, C. E. Estrada-Perez, Y. A. Hassan, Int. J. Therm. Sci. 90, 248–266 (2015) [CrossRef] [Google Scholar]
  36. P. A. Walsh, E. J. Walsh., Y. S. Muzychka, Int. J. Heat Mass Tran. 53, 3193–3201 (2010) [CrossRef] [Google Scholar]
  37. T. Orzechowski, Exp. Therm. Fluid Sci. 31 (8), 947–955 (2007) [CrossRef] [Google Scholar]
  38. T. Orzechowski, A. Tyburczyk, ISI Master Journal List 87 (7), 48–51 (2011) [Google Scholar]
  39. T. Orzechowski, Heat transfer on ribs with microstructured surface, Monographs, studies, hearings 39 (in Polish) (the Publishing House of the Kielce Univ. Techn., Kielce, Poland, 2003) [Google Scholar]
  40. User’s manual ThermaCam B640, P640, SC640, Publ. No 155850 Rev.a 201-ENGLISH (EN) (2007) [Google Scholar]
  41. M. Piasecka, B. Maciejewska, Exp. Therm. Fluid Sci. 68, 459–467 (2015) [CrossRef] [Google Scholar]
  42. S. Hożejowska, M. Piasecka, Heat Mass Tran. 50, 1053–1063 (2014) [CrossRef] [Google Scholar]
  43. K. Ziętala, M. Piasecka, Trans. Inst. Fluid-Flow Machinery, 128 (to be published) [Google Scholar]
  44. S. Hożejowska, R. Kaniowski, M. E. Poniewski, Int. J. Numer. Method Heat Fluid Flow 24, 811–824 (2014) [CrossRef] [Google Scholar]
  45. M. E. Steinke, S. G. Kandlikar, J. Heat Tran. 126 (4), 518–526 (2004) [CrossRef] [Google Scholar]
  46. M. Cortina Dı´az, J. Schmidt, Int. J. Heat Fluid Flow 28, 95–102 (2007) [CrossRef] [Google Scholar]
  47. E. Sobierska, R. Kulenovic, R. Mertz, M. Groll, Exp. Therm. Fluid Sci. 31, 111–119 (2006) [CrossRef] [Google Scholar]
  48. E. Sobierska, R. Kulenovic, R. Mertz, Int. J. Therm. Sci. 46, 1172–1181 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.