Open Access
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 01004
Number of page(s) 4
Section Spaceborne Lidar Missions
Published online 07 June 2016
  1. Illingworth, A., et al., 2014: THE EARTHCARE SATELLITE: The next step forward in global measurements of clouds, aerosols, precipitation and radiation. Bull. Am. Met. Soc., doi:10.1175/BAMS-D-12-00227.1. [Google Scholar]
  2. Barker, H. W., et al., 2011: A 3D cloudconstruction algorithm for the EarthCARE satellite mission. Q. J. R. Meteorol. Soc., 137, 1042–1058, doi: 10.1002/qj.824. [CrossRef] [Google Scholar]
  3. Omar, A. H., et al., 2005: Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements, J. Geophys. Res., 110, D10S14, doi:10.1029/2004JD 004874. [CrossRef] [Google Scholar]
  4. Omar, A. H., et al., 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 1994–2014. doi:10.1175/2009JTECHA1231.1. [Google Scholar]
  5. Burton, S. P., et al., 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples. Atmos. Meas. Tech., 5, 73–98, doi:10.5194/amt-5-73-2012. [Google Scholar]
  6. Groß, S., et al., 2014: Towards an aerosol classification scheme for future EarthCARE lidar observations and implications for research needs. Atmosph. Sci. Lett., 16, 77–82, doi: 10.1002/asl2.524. [Google Scholar]
  7. Russell, P. B., et al., 2014: A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry. J. Geophys. Res. Atmos., 119, 9838–9863, doi:10.1002/2013JD 021411. [CrossRef] [Google Scholar]
  8. Holzer-Popp, T., et al., 2013: Aerosol retrieval experiments in the ESA Aerosol_cci project, Atmos. Meas. Tech., 6, 1919–1957, doi:10.5194/amt-6-1919-2013. [CrossRef] [Google Scholar]
  9. Groß, S., et al., 2011: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B, 63, 706–724, doi:10.1111/j.1600-0889.2011.00556.x. [Google Scholar]
  10. Groß, S., et al., 2012: Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany. Atm. Env., 48, 85–96, doi:10.1016/j.atmosenv.2011.06.017. [CrossRef] [Google Scholar]
  11. Baars, H., et al., 2012: Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J. Geophys. Res., 117, D21201, doi:10.1029/2012JD 018338. [CrossRef] [Google Scholar]
  12. Kanitz, T., et al., 2013: North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. J. Geophys. Res. Atmos., 118, 2643–2655, doi:10.1002/jgrd.50273. [CrossRef] [PubMed] [Google Scholar]
  13. Dubovik, O., et al., 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619. [Google Scholar]
  14. Hess, M., et al., 1998a: Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Met. Soc., 79, 831–844. [Google Scholar]
  15. Koepke, P., et al., 2015: Technical Note: Optical properties of desert dust with non-spherical particles: data incorporated to OPAC. Atmos. Chem. Phys. Discuss., 15, 3995–4023, doi:10.5194/acpd-15-3995-2015. [CrossRef] [Google Scholar]
  16. Kandler, K., et al., 2009: Size distributions, mass concentrations, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B, 61, 32–50, doi:10.1111/j.1600-0889.2008.00385.x. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.